
INSA de Rouen

STPI - SIB

Module M2:

“Elementary algebraic structures

and geometry”

Lecture notes

Vladimir Salnikov,
vladimir.salnikov@insa-rouen.fr
with active participation of

Maria Bermudez, Celia Fontenelle, Morgan Ridel, Jorge Ochoa



The goal of this course is twofold. On the one hand we will discuss some basic algebraic and geometric notions

that constitute some minimal knowledge necessary for continuing your studies in INSA, does not matter if

you plan to do pure or applied mathematics, information technology, physics or any other science. On the

other hand (and even more important) we will profit from these basic objects to understand the internal

logic of mathematics: the way from definitions to general statements via proofs, the way from abstract

generalizable notions to concrete examples, the way from vague analogies to well-defined similarities.

The course is mostly self-consistent and does not need any special preliminary knowledge, though we will

rediscover/redefine some things that you were supposed to did learn in high school, but we will consider

them, probably from a somewhat different angle.

Some of the topics in these lecture notes (especially in the first half) are not mandatory for the
M2 module: they are given either to simplify the understanding of appropriate notions in the next
semesters or for general culture. These parts will be marked in blue. Each section will be followed
by a list of typical exercises that are useful to check your understanding of the material.
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0 Complex Numbers

The M2 module traditionally starts with complex numbers. In this section we will construct the theory of

complex numbers “from scratch”. We will have to admit only one trigonometric formula that will be proven

in the next section, otherwise the presentation is self consistent.

0.1 Definition of arithmetic operations

Definition 0.1 (Formal) A complex number is an ordered couple of real numbers (x, y).
On the set of complex numbers C two binary operations are defined:
Addition +: C× C→ C; If z1 = (x1, y1), z2 = (x2, y2), then z1 + z2 := (x1 + x2, y1 + y2)
Multiplication · : C×C→ C; If z1 = (x1, y1), z2 = (x2, y2), then z1 ·z2 := (x1x2−y1y2, x1y2 +x2y1)

Proposition 0.1 Properties of these operations: ∀z1, z2, z3 ∈ C

• Commutativity of addition: z1 + z2 = z1 + z2 and multiplication: z1 · z2 = z2 · z1

• Associativity of addition: z1 + (z2 + z3) = (z1 + z2) + z3 and multiplication: z1 · (z2 · z3) =
(z1 · z2) · z3

• Distributivity of multiplication over addition: z1 · (z2 + z3) = z1 · z2 + z1 · z3

Proof. Direct computation using the definition �

Existence of zero: Zero is an identity element with respect to addition:
∃0 ∈ C : ∀z ∈ C z + 0 = 0 + z = z.
This permits to define the additive inverse
∀z ∈ C ∃(−z) ∈ C : z + (−z) = (−z) + z = 0. 0 = (0, 0). If z = (x, y),−z = (−x,−y).
This permits to define the subtraction z1 − z2 = z1 + (−z2)

Existence of a unity: Unity is an identity element w.r.t multiplication:
∃1 ∈ C : ∀z ∈ C z · 1 = 1 · z = z.
This permits to define the multiplicative inverse
∀z ∈ C ∃(z−1) ∈ C : z · (z−1) = (z−1) · z = 1.

1 = (1, 0). If z = (x, y), z−1 = ( x
x2 + y2 ,

−y
x2 + y2 ).

This permits to define the division z1
z2

= z1 · z−1
2 = z−1

2 · z1.

Remark 0.1 All these properties hold for Q and R as well (up to formulas).

Two characteristic features of complex numbers:

• There is no natural order on C, i.e z1 = z2 is defined but z1 > z2, z1 < z2 for generic
z1, z2 ∈ C is not.

• Existence of imaginary unity: ∃ an element z ∈ C such that z2 = −1; z = (0, 1)

0.2 Algebraic model of complex numbers

Denote i = (0, 1) then i2 = −1.
C 3 (x, y)↔ x+ iy = z.︸ ︷︷ ︸

algebraic form of complex number

The real part <e(z) = x, the imaginary part =m(z) = y
This is compatible with the operations +,−, ·, / if we consider them as acting on polynomials in i
modulo the relation i2 = −1
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Example 0.1 For z1 = x1 + iy1, z2 = x2 + iy2

z1 · z2 = (x1 + iy1)(x2 + iy2) = x1x2 + iy1x2 + ix1y2 − y1y2 = x1x2 − y1y2 + i(y1x2 + x1y2)

Definition 0.2 The complex conjugate of z = x+ iy is z̄ = x− iy

Remark 0.2 z = z̄ then z is real

0.3 Geometric model of complex numbers

To each complex number z = (x, y) we associate a vector in R2 with coordinates

(
x
y

)
. The

addition is just the usual addition of vectors in R2:
−−−−→
(x1, y1)+

−−−−→
(x2, y2) =

−−−−−−−−−−−−→
(x1 + x2, y1 + y2)

Definition 0.3 Modulus of a complex number |z| is the length of the corresponding vector in R2

Definition 0.4 Argument of a complex number arg(z) is the oriented angle between the corre-
sponding vector and the abscissa axis

Proposition 0.2 For z = x+ iy
arg(z) satisfies: {

x = |z|cos(arg(z))
y = |z|sin(arg(z))

“Proof”: The statement follows from the properties of the length in R2 and the definition of sin
and cos with the trigonometric circle.

Definition 0.5 The trigonometric form of complex numbers z = x + iy = r(cos(γ) + i sin(γ)),
such that r ≥ 0,γ ∈ [0, 2π[

Proposition 0.3 ∀z1, z2 ∈ C : |z1 · z2| = |z1||z2|; arg(z1) · z2 = arg(Z1) + arg(z2)

Proof: Write z1 and z2 in the trigonometric form:
z1 = r1(cos(γ1 + i sin γ1)), z2 = r2(cos(γ2 + i sin γ2)).

z1 · z2 = r1(cos γ1 + i sin γ1) · r(cos γ2 + i sin γ2)

= r1r2(cos γ1 cos γ2 + i sin γ2 cos γ1 + i sin γ1 cos γ2 − sin γ1 sin γ2)

= r1r2(cos(γ1 + γ2) + i sin(γ1 + γ2))
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Remark 0.3 γ1 + γ2 need not belong to [0, 2π[

Corollary 0.1 For n ∈ N

1). For z 6= 0 |z−1| = 1
|z| , arg(z−1) = −arg(z)

2). |zn| = |z|n, arg(zn) = narg(z)

3). zn = w 6= 0 admits n distinct solutions in C.
By definition these solutions are called n-th roots of w.

Proof.
1). By definition z−1 · z = 1
In view of the proposition |z−1||z| = |1| = 1; arg(z−1) + arg(z) = arg(1) = 0.
2). By induction (recurrence proof).

3). zn = w ⇔
{
|z|n = |w|
narg(z) = arg(w) + 2πk, k ∈ Z ⇔

{
|z| = n

√
|w|

arg(z) = arg(w)
n + 2πk

n

nδ = ω
n(δ + 2π

n ) = nδ + 2π = ω + 2π
n(δ + 2π·2

n ) = ω + 4π
. . .
n(δ + 2πn

n ) = ω + n2π

Example 0.2 z3 = 1⇔
{
|z|3 = 1

arg(z) = 2πk
3 , k ∈ Z

The solutions are:

ω3,0= 1

ω3,1=−1
2 + i

√
3

2

ω3,2=−1
2 − i

√
3

2

Definition 0.6 Exponential form of complex numbers (Moivre’s formula): eiγ = cos γ + i sin γ.
A complex number with modulus equal to 1 and argument equal to γ is often denoted by eiγ.
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For the moment we view it as a notation. In fact it is related to the Taylor series of exp, cos, sin.

Remark 0.4 Because of the proposition 0.3, eiγ satisfies the usual property of exponential:
ea · eb = ea+b

Exercises.

1. Given a complex number in some form, cast it into algebraic/trigonometric/exponential form.

2. Choose the convenient form of a complex number to perform addition/subtraction/multiplication/division
and explain the geometric meaning of the result.

3. Find all the solutions of the equation zn = w in C, depict them on the complex plane.

4. Describe the set of points on the plane given by a condition on complex numbers.

5. Deduce the formulas for trigonometric functions of multiple angles.

1 Geometry of R2 and R3

In this long section we will introduce most of the geometric objects and notions that are necessary in the

course. We will always give general definitions that you will review in the next semester, but the main

examples will be R2 and R3.

1.1 Linear spaces

Definition 1.1 A vector space (linear space) over R is a non empty set V with two operations:

+ : V × V → V · : R× V → V
~v, ~w 7→ ~v + ~w α,~v 7→ α · ~v

satisfying the axioms: ∀u, v, w ∈ V , ∀α, β ∈ R
(we will omit the arrow above vectors when it does not lead to a confusion)

1. v+w = w+v

2. v+(w+u)=(v+w)+u

3. ∃ ~0 ∈ V : ∀v ∈ V v +~0 = ~v

4. ∃(-v)∈V , v+(-v)=~0

5. α · (β · v) = (αβ) · v
6. α(v+w) = αv + αw

7. 1 · v = v

8. (α+β)v=αv + βv

Example 1.1 {~0} is a vector space

Example 1.2 R2 with component-wise addition and multiplication by real numbers

Definition 1.2 A norm is a mapping︸ ︷︷ ︸
v 7→||v||

V→R satisfying :

• ∀ v ||v||≥0 and ||v|| =0 ⇒ v = ~0

• ||α · v||=|α| ||v||

• ||v + w|| ≤ ||v||+ ||w||
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Example 1.3 In R2= {(x, y)} , ||(x, y)|| =
√
x2 + y2

Definition 1.3 A real-valued scalar product is a mapping V×V→R
v, w 7→ (v, w) (other notations: < v,w >, v · w), which is

• linear (αv+βw,u) = α(v,u)+β(w,u)

• symmetric (v,w) = (w,v)

• positive definite (v, v) ≥ 0 and if (v, v) = 0 then v = ~0

Proposition 1.1 A scalar product always induces a norm ||v|| =
√

(v, v).
For a real-valued scalar product (v,w)=1

2(||v + w||2 − ||v||2 − ||w||2).

Proof. The axioms for (v, v) repeat exactly the axioms for the norm, up to the triangular in-
equality, that follows from isolating a perfect square. (This is true even for complex-valued scalar
products). The other way around: for a real valued (·, ·) let us compute

1

2
(||v + w||2 − ||v||2 − ||w||2) =

1

2
((v + w, v + w)− (v, v)− (w,w)) =

=
1

2
((v, v) + (w,w) + (v, w) + (w, v)− (v, v)− (w,w)) = (v, w)

Example 1.4 In R2 ||v|| =
√
v2
x + v2

y

(v, w) =
1

2

[
(vx + wx)2 + (vy + wy)

2 − (v2
x + v2

y) + (w2
x + w2

y)
]

=

=
1

2
[2vxwx + 2vywy] = vxwx + vywy

Remark 1.1 On the following picture consider the triangle formed by ~v, ~w and ~v + ~w.

If we apply the cosine law to it we obtain c2 = a2 + b2 − 2ab cos γ which is equivalent to
||v+w||2 = ||w||2+||v||2+2||v|| ||w|| cosα. Compare it with the result of the proposition 1.1 – we see
that the scalar product can be computed using the “high-school” formula: (v, w) = ||v|| ||w|| cosα
and on the other hand with the formula that we have proven in the example 1.4:
(v, w) = vxwx + vywy. We can use any of them depending on the problem, moreover we have now
filled the gap in the proof of the formula for cos(α− β) (cf. tutorial 0).

Definition 1.4 Let (V, ||.||v) be a normed vector space, them a mapping f : V → V such that
||f(v)|| = ||v||, ∀v ∈ V is called an isometry.

Exercise. Describe the isometries R2 → R2.
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1.2 Dimension and linear subspaces

Definition 1.5 Consider W ⊆ V , W is a linear subspace of V (sub-vector space) if W is non-
empty and is itself a vector space with respect to the same operations as V .
It means that ∀α1, α2 ∈ R, ∀w1, w2 ∈W , α1w1 + α2w2 ∈W as well.

Example 1.5 V= R2 any line passing through ~0 is a linear subspace. Any other line is not.

Example 1.6 R2 is a linear subspace of itself.{
~0
}

is a linear subspace of any linear subspace.

Definition 1.6 Consider v1, ..., vm ∈ V α1, ..., αm ∈ R. A vector v = α1v1 + α2v2 + ...+ αmvm is
called a linear combination of v1...vm with coefficients α1...αm.

Definition 1.7 The vectors v1, ..., vm are called linearly independent if from α1v1+...+αmvm = ~0,
it follows that α1 = ... = αm = 0

Example 1.7 In R2, two vectors are linearly independent if and only if they are not collinear.
In R3, three vectors are linearly independent ⇔ they are not coplanar.

Definition 1.8 V is a linear span of v1, ..., vm if any v ∈ V can be expressed as a linear combi-
nation of v1, ..., vm.

Theorem 1.1 (Without proof.) The maximal number of linearly independent vectors in V does
not depend on the choice of these vectors.

Definition 1.9 The number from theorem 1.1 is called the dimension of V

Definition 1.10 The set of linearly independent vectors that span the whole space V is called a
basis. And the number of vectors in a basis is the dimension of V .

Remark 1.2 Theorem 1.1 + definitions above ⇒ the dimension doesn’t depend on the choice of
a basis.

Example 1.8 In R2 =

{(
x
y

)}
, the vectors e1 =

(
1
0

)
, e2 =

(
0
1

)
are linearly independent.

Indeed, if ~0 = α1e1 + α2e2 = α1

(
1
0

)
+ α2

(
0
1

)
=

(
α1

α2

)
, thus α1 = α2 = 0.

R2 is a span e1, e2. Indeed, any v =

(
x
y

)
= xe1 + ye2. x, y are then called the coordinates of v

in the basis e1, e2.

Exercise : Write explicitly the same thing in R3 =


 x

y
z

.

Example 1.9 C can be viewed as a real vector space of dimension 2.
Indeed, Take e1 = 1 ∈ C, e2 = i ∈ C, ∀z ∈ C, z = a · 1 + b · i; (a, b) ∈ R2
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1.3 Linear mappings

Consider V and W – vector spaces.

Definition 1.11 A mapping f : V →W is called linear if
∀v1, v2 ∈ V , ∀α1, α2 ∈ R
f(α1v1 + α2v2) = α1f(v1) + α2f(v2).

Example 1.10 (Trivial)

V=R, W=
{
~0
}

; f(v)=~0 is linear.

V=R = {x}, W=R = {y} : any linear mapping is of the form y = f(x) = kx

Example 1.11 Interesting examples are mappings R2 → R2 and R3 → R3

Linear mappings R2 → R2

In the above definitions fix V = R2, W = R2

If v = α1

(
1
0

)
+ α2

(
0
1

)
then f(v) = f

(
α1

(
1
0

)
+ α2

(
0
1

))
= α1f

(
1
0

)
+ α2f

(
0
1

)

Denote f

(
1
0

)
=

(
a11

a21

)
and f

(
0
1

)
=

(
a12

a22

)
.

Definition 1.12 A =

(
a11 a12

a21 a22

)
is called the matrix of the linear mapping f in the basis e1, e2.

Exercise: Let v =

(
x1

x2

)
and f be given by A. Compute f(v).

Let g be given by B=

(
b11 b12

b21 b22

)
. Compute f(g(v))

Correction. f(v) = x1f

(
1
0

)
+ x2f

(
0
1

)
= x1

(
a11

a21

)
+ x2

(
a12

a22

)
=

(
a11x1 + a12x2

a21x1 + a22x2

)
(∗)

Definition 1.13 In R2 for A =

(
a11 a12

a21 a22

)
and v =

(
x1

x2

)
, the matrix-vector product A · ~v is

defined by (∗)

Remark 1.3 A way to remember the explicit formula (∗) A~v =

(−−−−−−−−→
1st line of A · ~v
−−−−−−−−−→
2nd line of A · ~v

)
, where “·”

denotes the scalar product in R2.

Consider now the composition of two linear mappings f : R2 7−→ R2 ; g : R2 7−→ R2

f ◦ g : R2 → R2, v 7−→ f(g(v))

Proposition 1.2 f ◦ g is a linear mapping.

Proof. (f ◦ g)(αv + βw) = f(g(αv + βw)) = f(αg(v) + βg(w)) = αf(g(v)) + βf(g(w)).
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Let us compute the columns of the matrix C associated to f ◦ g.

f

(
g

(
1
0

))
= f

(
b11

b21

)
=

(
a11b11 + a12b21

a21b11 + a22b21

)
,

f

(
g

(
0
1

))
= f

(
b12

b22

)
=

(
a11b12 + a12b22

a21b12 + a22b22

)
.

C =

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
Definition 1.14 In R2, C is called the matrix-matrix product of the matrices A and B.

Remark 1.4 A way to remember: C =


−−−−−−−−−→
1st line of A·

−−−−−−−−−−−→
1st column of B

a11b11 + a12b21

−−−−−−−−−→
1st line of A·

−−−−−−−−−−−−→
2nd column of B

a11b12 + a12b22

a21b11 + a22b21−−−−−−−−−→
2nd line of A·

−−−−−−−−−−−→
1st column of B

a21b12 + a22b22−−−−−−−−−→
2nd line of A·

−−−−−−−−−−−−→
2nd column of B

.

Remark 1.5 In the generic case: A ·B 6= B ·A

Remark 1.6 One can define linear mappings Rm → Rn, using n
#of lines

× m
#of columns

matrices.

One can compose them and define the product of the respective matrices if the sizes match.

f ◦ g : Rm g7−→ Rn f7−→ Rk

Exercise. Consider linear mapping R3 7−→ R3

1. Define the matrix (3 ∗ 3)

2. Define A · ~v
3. Define A ·B

Linear mappings R3 → R3

Consider a linear mapping f : R3 → R3. Choose a basis of R3:

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1

 .

Denote f(e1) =

 a11

a21

a31

 , f(e2) =

 a12

a22

a32

 , f(e3) =

 a13

a23

a33

.

Consider v =

 x1

x2

x3

 = x1e1 + x2e2 + x3e3. By linearity,

f(v) = x1f(e1)+x2f(e2)+x3f(e3) =

 a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3

 =:

 a11 a12 a13

a21 a22 a23

a31 a32 a33

·
 x1

x2

x3



This defines a product A · v of a matrix A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 and a vector v =

 x1

x2

x3

.

Defining a linear mapping R3 → R3 is thus equivalent to fixing a basis and giving a 3× 3 matrix.
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Consider now another linear mapping g : R3 → R3 given by a matrix B =

 b11 b12 b13

b21 b22 b23

b31 b32 b33

.

By the same argument as in R2 their composition f ◦ g(·) = f(g(·)) is linear.

f(g(v)) = A · (B · v) =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ·
 b11x1 + b12x2 + b13x3

b21x1 + b22x2 + b23x3

b31x1 + b32x2 + b33x3

 =

=

 a11(b11x1 + b12x2 + b13x3) + a12(b21x1 + b22x2 + b23x3) + a13(b31x1 + b32x2 + b33x3)
a21(b11x1 + b12x2 + b13x3) + a22(b21x1 + b22x2 + b23x3) + a23(b31x1 + b32x2 + b33x3)
a31(b11x1 + b12x2 + b13x3) + a32(b21x1 + b22x2 + b23x3) + a33(b31x1 + b32x2 + b33x3)

 =

=

 a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33

a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33

a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33

 ·
 x1

x2

x3


The last line is (A ·B) · v and thus provides a definition of a product A ·B of two 3× 3 matrices.

Some particular cases

Exercise. Consider R2 7−→ R2 as vector spaces.
What are linear isometries R2 7−→ R2 ?
Hints. Reminder. Linear f(αv + βw) = αf(v) + βf(w). Isometry: ‖f(v)‖ = ‖v‖

Remark 1.7 Translation (parallel transport) is not linear.
Fix ~w; f(~v) := ~v + ~w
If linear: f(~v1 + ~v2) = f(~v1) + f(~v2) = ~v1 + ~w + ~v2 + ~w.
In reality: f(~v1 + ~v2) = ~v1 + ~v2 + ~w 6= ~v1 + ~w + ~v2 + ~w.

Proposition 1.3 For a linear mapping f(~0) = ~0

Proof : ~0 = f(~0) = f(2 ·~0) = 2 · f(~0)⇒ 2f(~0) = f(~0)⇔ f(~0) = ~0

Fact: A linear isometry of R2 (as a vector space) is either a rotation around the origin or a
reflection with respect to any line passing through the origin.

1.4 Spaces of points – affine spaces.

Definition 1.15 An affine space is a set of points A together with an action of a vector space V
on it. It means that there is an operation +: A× V → A,
for p ∈ A and v ∈ V , p

point
, v
vector

7→ p+ v
point

, satisfying:

1. (p+ v) + w = p+ (v + w)

2. p+~0 = p

3. ∀p1, p2 ∈ A,∃!v ∈ V such that p2 = p1 + v. It is often denoted −−→p1p2.

The dimension of the affine space A is equal to the dimension of the associated vector space V .
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Example 1.12 A = R2, V = R2

Example 1.13 A = a line in R, V = 1-dim linear subspace of R2 parallel to this line.

Remark 1.8 To define A it is sufficient to give a point in A and the vector space V . V is defined
uniquely, but the choice of a point is not.

Remark 1.9 (Important) For a set p1 . . . pm ∈ A and α1 . . . αm ∈ R the combination α1p1 +
. . . αmpm does not have a geometric meaning in the generic case.
But it does if α1 + α2 + . . . αm = 1

Definition 1.16 For a set of points p1, . . . , pm ∈ A and a set of coefficients α1, . . . , αm ∈ R, such
that α1 + α2 + . . . αm = 1, a point p = α1p1 + . . . αmpm is called a barycentric combination of
p1, . . . , pm.

Example 1.14 Fix two points on a line – any point of this line can be represented as a barycentric
combination of these two. Fix three non-collinear points in a plane – any point of this plane can
be represented as a barycentric combination of these three. These decompositions are related to the
geometric interpretation of the center of masses.

Definition 1.17 The points p1, . . . , pm are called affinely independent if non of them is a barycen-
tric combination of the others. If any point in A can be expressed as a barycentric combination of

12



the points p1, . . . , pm, these points are called a barycentric basis of A; and the coefficients of the
decomposition are called barycentric coordinates.

Remark 1.10 For an affine space of dimension n any set of n+ 1 affinely independent points in
it forms its barycentric basis.

Definition 1.18 (Formal) An affine mapping f : A → A is a mapping such that ∀p1, p2 ∈ A
f(p1)− f(p2) = ϕ(p1 − p2), where ϕ is a linear mapping V → V .

Remark 1.11 f is affine if it maps lines to lines, planes to planes... This property is sometimes
used as a definition.

We will be interested in a subclass of affine mappings.

Definition 1.19 A similarity transformation of A satisfies d(f(p1), f(p2)) = kd(p1, p2), where
d(·, ·) denotes the distance between points in A, and k ∈ R.

Example 1.15 (Exercise) Below are the pictures of the coordinate grid after several mappings.
Choose affine mappings and similarity transformations.

13



Theorem 1.2 (Chasles) Any similarity transformation in R2 belongs to one of the following
classes:

• A shift (parallel transport)

• A rotational homothety (a composition of a rotation and homothety with the same center)

• A sliding symmetry (a reflection symmetry w.r.t. a line and a shift along this line) composed
with a homothety with a center on the axis of symmetry.

Idea of the proof. Consider the set of fixed points – there can be none, exactly one, a line or the
whole space, moreover a line can be preserved as a set of points. Then consider the corresponding
“building blocks” from tutorial 2, exercise 2.

Remark 1.12 The similarity transformations of the first two types are orientation preserving,
they are described by the mappings C→ C of the form z 7→ az+ b. The similarity transformations
of the third type are orientation reversing, they are described by the mappings C→ C of the form
z 7→ az̄ + b.

Definition 1.20 An affine subspace of a vector space W is a couple A, V , (where A is a set of
points and V is a linear subspace of W ), such that any point p ∈ A can be recovered in the form
p0 + ~v for a fixed point p0 ∈ A and some vector v ∈ V .

Remark 1.13 It means that A is obtained from a linear subspace V ⊆W by a shift.

Example 1.16 W = R2 – any straight line is an affine subspace of R2. W = R3 – any straight
line or a plane is an affine subspace of R3. We will turn to these examples in more details in the
following sections.

Definition 1.21 For an affine subspace A of W given by p0 ∈ A and V ⊆W , dimA = dimV . If
dimA = dimW − 1 then A is called hyperplane of W

14



1.5 Straight lines in R2

Parametric description of L: L = {p0 + λ~v} where p0 is a point on the line, ~v a direction vector of
L and λ ∈ R.

Consider this description in coordinates: p =

(
x
y

)
, p0

(
x0

y0

)
, and let ~n be a vector orthogonal to

L: ~n

(
nx
ny

)
. (~p− ~p0) · ~n = 0⇒ ~p · ~n− ~p0 · ~n = 0, or in coordinates xnx + yny − (x0nx + y0ny) = 0

– this gives the algebraic form (Cartesian form) of L: ax+ by + c = 0

Consider now an arbitrary point M =

(
mx

my

)
∈ R and compute the distance h from it to L.

h =
|
−−→
PM · ~n|
||~n|| =

∣∣∣∣∣∣
mx − px
my − py

 ·
a
b

∣∣∣∣∣∣√
a2 + b2

=

∣∣∣∣∣∣
mx

my

 a
b

−
px
py

 a
b

∣∣∣∣∣∣√
a2 + b2

=
|amx + bmy + c|√

a2 + b2
.

We have just proven the

Proposition 1.4 For a line in R2 given by ax+ by + c = 0 the distance from any point

M =

(
mx

my

)
∈ R2 to it is given by h =

|amx + bmy + c|√
a2 + b2
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1.6 Planes in R3.

The parametric description of a plane P is given by P = {p0 + λ~v + µ~w}, ~v, ~w ∈ R3, λ, µ ∈ R.
Following the scheme from before consider the description in coordinates:

p =

xy
z

 , p0 =

x0

y0

z0

 and the orthogonal vector ~n =

ab
c

 .

This gives: (~p− ~p0) · ~n = 0⇔ ~p · ~n = ~p0 · ~n.
Then the algebraic form (Cartesian form) of P is ax+ by + cz + d = 0

Proposition 1.5 For a plane in R3 given by ax + by + cz + d = 0 the distance from any point

M =

mx

my

mz

 ∈ R3 to it is given by h =
|amx + bmy + cmz + d|√

a2 + b2 + c2
.

Proof. (Exercise) The proof repeats exactly the scheme of the previous proposition about R2.

Remark 1.14 Some computational hints:

1) In R2 if ~v

(
vx
vy

)
an orthogonal vector can be taken as ~n =

(
vy
−vx

)
2) In R3 if ~v

vxvy
vz

 and ~w

wxwy
wz

 then an orthogonal vector ~n =

 vywz − vzwy
−(vxwz − vzwx)
vxwy − vywx0


Definition 1.22 For ~v, ~w ∈ R3 the vector product (cross product) is given in coordinates (in a

right basis) by ~v × ~w =

 vywz − vzwy
−(vxwz − vzwx)
vxwy − vywx

 . Other notations: ~v ∧ ~w, [~v, ~w].

Proposition 1.6
1). (~v × ~w) ⊥ ~v, (~v × ~w) ⊥ ~w = 0
2). The direction of it is given by the right-hand rule (bottle open rule).
3). |~v × ~w| = |~v||~w|| sin (~v; ~w)|

Proof.
1). ~v ·~v× ~w = vx(vywz−vzwy)−vy(vxwz−vzwx)+vz(vxwy−vywx) = vxvywz−vxwyvz−vxvywz+
wxvyvz + vxwyvz − wxvyvz = 0. Similarly for ~w · ~v × ~w
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2). This is more a fact about compatibility of conventions than a mathematical statement, we will
however understand it in what follows talking about oriented volumes. The proof of 3). will follow
from the next section as well.

1.7 Determinants and volumes

Definition 1.23 In R2 the oriented area of a parallelogram formed by the vectors ~v and ~w is its
geometric area with a sign ±, where + is chosen when the shortest rotation from ~v to ~w is counter
clock-wise and − if it is clock-wise.
In R3 the oriented volume of a parallelogram formed by the vectors ~u, ~v and ~w is its geometric
volume with a sign ±, where + when ~u,~v, ~w is a right triple and − if it is a left one.

Definition 1.24 The determinant of a 2× 2 matrix is given by: det

(
a b
c d

)
= ad− bc

The determinant of a 3×3 matrix is given by: det

a b c
d e f
g h i

 = aei+ bfg+dhc− ceg− bdi−afh

These two definitions are related by the following.

Theorem 1.3

I. Consider two vectors ~v =

(
a
c

)
, ~w =

(
b
d

)
. The (oriented) area of the parallelogram formed

by ~v and ~w is equal to the determinant of the matrix constructed from these vectors as columns:

S(~v, ~w) = det

(
a b
c d

)
:= ad− bc.

II. Consider three vectors ~u =

ad
g

 , ~v =

be
h

 , ~w =

cf
i

 . The (oriented) volume of the paral-

lelepiped formed by ~u,~v, and ~w is equal to the determinant of the matrix constructed from these

vectors as columns: V (~u,~v, ~w) = det

a b c
d e f
g h i

 := aei+ bfg + dhc− ceg − bdi− afh.

Proof of part I.
1). The (oriented) area can be viewed as a mapping S : R2 × R2 → R, which is bilinear,
antisymmetric in its arguments, and is equal to 1 when computed on the canonical basis of
R2. Because of antisymmetry, it is sufficient to check linearity for one argument. Clearly,
S(α~v, ~w) = αS(~v, ~w). To prove the equality S(~u + ~v, ~w) = S(~u, ~w) + S(~v, ~w) consider the pic-

ture: ~u =
−→
AE,~v =

−−→
EB, ~u + ~v =

−−→
AB. The equality then means that SABCD = SAEDF + SEBCF ,

which is true, since 4AEB = 4DFC.
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2). Consider now an arbitrary function S that satisfies the properties from 1). S(v, w) =
S(ae1+ce2, be1+de2) = S(ae1, be1+de2)+S(ce2, be1+de2) = abS(e1, e1)+adS(e1, e2)+cbS(e2, e1)+

cdS(e2, e2) = ad− bc = det

(
a b
c d

)
:= ad− bc �

Proof of part II.
1). The (oriented) volume can be viewed as a mapping S : R3 × R3 × R3 → R, which is trilinear,
antisymmetric in its arguments, and is equal to 1 when computed on the canonical basis of R3.
Because of antisymmetry, it is sufficient to check linearity for one argument. Clearly, V (α~u,~v, ~w) =
αV (~u,~v, ~w). To prove the equality V (~u1 +~u2, ~v, ~w) = V (~u1, ~v, ~w)+V (~u2, ~v, ~w) consider the picture:

~u1 =
−→
AL, ~u2 =

−→
LD, ~u1 + ~u2 =

−−→
AD. The equality then means that VABCDEFGH = VABKLEFJI +

VLKCDIJGH . One notices immediately that the four tetrahedra (ALDP , EIHN , FJGM , BKCO)
are equal. It is thus easy to see that all the parts that are added on the upper left to ABCDEFGH
possess equal parts that are cut out on the lower right.
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2). Consider now an arbitrary function V that satisfies the properties from 1). V (u, v, w) = V (ae1+
de2+ge3, be1+ee2+he3, ce1+fe2+ie3) = V (ae1, ee2+he3, fe2+ie3)+V (de2, be1+he3, ce1+ie3)+
V (ge3, be1+ee2, ce1+fe2) = aeiV (e1, e2, e3)+ahfV (e1, e3, e2)+dbiV (e2, e1, e3)+dhcV (e2, e3, e1)+

gbfV (e3, e1, e2) + gecV (e3, e2, e1) = aei− ahf + dhc− dbi+ gbf − gec =: det

a b c
d e f
g h i

 �

Corollary 1.1 Using the formula of the volume via the determinant we can prove the proposition
1.6.3)

Proof. Consider ~v

vxvy
vz

 and ~w

wxwy
wz

 We know from the proposition 1.6.1) that the vector

~v × ~w is orthogonal to ~v and to ~w. The area of the parallelogram formed by ~v and ~w is equal
to |~v||~w|| sin∠(~v, ~w)|. Thus, the volume |V (~v, ~w,~v × ~w)| = |~v||~w|| sin∠(~v, ~w)||~v × ~w|. Let us

compute it using the determinant formula: V (~v, ~w,~v× ~w) = det

 vywz − vzwy vx wx
−(vxwz − vzwx) vy wy
vxwy − vywx vz wz

 =

(vywz − vzwy)2 + (vxwz − vzwx)2 + (vxwy − vywx)2 = |~v × ~w|2. It means that |~v × ~w|2 = |~v ×
~w||~v||~w|| sin∠(~v, ~w)| ⇒ |~v × ~w| = |~v||~w|| sin∠(~v, ~w)|. �

Exercises

1. Give an algebraic description of a given similarity transformation. Conversely, given the analytic
description or some other information, situate the similarity transformation in view of the Chasles’
theorem.

2. Compute the distances between points in R2 and R3, what is the relation to scalar product?

3. Given some information of a line or a plane, produce its algebraic or parametric description.
Describe intersections of lines/planes.

4. Compute the distance from a point to a line/plane, compute the distance between lines/planes.

5. Compute the area of a polygon, the volume of a polyhedron.

6. Compute 2× 2 and 3× 3 determinant.

7. Check if given vectors are collinear/orthogonal/coplanar.
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2 Abstract algebraic notions

This section is devoted to the definition of algebraic structures: groups, rings, fields, etc. We will see that

a lot of familiar objects fit into some general framework. The advantage of this approach is that we can

formalize the notion of objects that “look alike” (introducing morphisms) and profit from this similarity when

solving concrete problems. Two important examples in this section are integer numbers and polynomial

functions.

Let us start with an enigma:

Consider a set E and define a function S : E 7→ E that satisfies the following properties:

• e ∈ E
• x ∈ E⇒ S(x) ∈ E
• @x ∈ E : S(x) = e

• If S(b) = a and S(c) = a then b = c
• If P (e) is true and ∀x P (x)⇒ P (S(x)) then ∀x P (x) is true.

(P (x) – some statement about elements of E)

What can be this set E and the mapping S? The answer is given by the following:

Definition 2.1 (Peano 1889) : A set of natural numbers N is defined by fixing the first element
e, the mapping S : N→ N(n→ n+ 1) with the properties :

1. @n ∈ N such that n+ 1 = e

2. If S(n1) = n and S(n2) = n then n1 = n2

3. The induction principle holds : if some statement P is true for n = e and from P (k) we can
deduce P (k + 1)∀k, then P is true for all n ∈ N

Theorem 2.1 (With a difficult proof using advanced mathematical analysis)
These axioms define N uniquely (up to isomorphism). That is an absolutely abstract construction
from the enigma above defines a very concrete object.

Remark 2.1 There are 2 conventions that are often used : e = 1 or e = 0.
The second choice e = 0 is related to set theory: ∅ 7→ 0, ∅ ∪ {1 element} 7→ 1 = S(0).
Moreover, with e = 0, N becomes a semi-group with a neutral element.
This explains also a somewhat strange numbering of sections in this document.

Combinatorics.

Before going to real algebraic construction let us recall some notions from combinatorics that deal
with E = {1, 2, 3, ..., n} ⊂ N, and that are often used in exercises in particular related to induction.

• Permutations : the choice of the order in E.
Number of permutations: Pn = n! = n(n− 1)(n− 2)...1

• Multiplets of the elements of E : k-tuples (couples, triples) (x1, x2....xk)︸ ︷︷ ︸
xi∈E

with possible repetitions

of elements. Akn = nk

• k-permutations of n elements : {x1, x2, ...xk}, xi ∈ E, xi 6= xj if i 6= j

The number of them is Akn = n(n− 1)(n− 2)...(n− k + 1) = n!
(n−k)!
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• Combinations : {x1, x2, ...xk}, xi ∈ E, xi 6= xj if i 6= j and the order is not important.(
n
k

)
= Ckn = Ak

n
Pk

= n!
(n−k)!k!

Remark 2.2
(
n
k

)
(or Ckn) are often called the binomial coefficients, because of the following:

Proposition 2.1 (Newton’s binomial formula) (x+ y)n =
n∑
k=0

Cknx
n−kyk

Proof (exo) : By induction using the property Ckn = Ckn−1 + Ck−1
n−1 (Pascal triangle)

2.1 Group theory

Definition 2.2 A set G is called a group if it is non-empty and equipped with a binary operation
? : G×G→ G with the following properties:

1. Associativity: ∀a, b, c ∈ G, a ? (b ? c) = (a ? b) ? c

2. Existence of a neutral element: ∃e ∈ G : ∀a ∈ G, a ? c = e ? a = a

3. Existence of an inverse element: ∀a ∈ G : ∃a−1? ∈ G, a−1? ? a = a ? a−1? = e

The subscript ? at −1 in the third property is to stress that the inverse is understood with respect to the

binary operation defined by ?. In what follows we will drop this subscript if it does not lead to a confusion.

Definition 2.3 If in addition to the previous definition, ∀a, b ∈ G, a ? b = b ? a, the group G is
called abelian (commutative).

Example 2.1 G ∈ Z, ? = + is an abelian group.
G = Q > 0, ? = ×
G = R, ? = +
G = R/ {0} , ? = ×

Example 2.2 G is set of two elements (say, a table u and a chair h) with an operation given by:

? h u
h h u
u u h

The associativity can be checked explicitly by comparing the values of the expressions of the form:
u = h ∗ (u ? h) = (h ? u) ? h = u for all (A3

2 = 8) possible triplets of the elements of G.
The neutral element e = h. The inverse elements: h−1? = h, u−1? = u.
This group is more familiar as G = {0, 1} with addition modulo 2.

The previous example shows that two different groups can in fact be absolutely similar. Idea of the

mathematical construction behind this phenomenon: a morphism between two sets with similar structures

is a mapping between them, which “respects” the structures.

Definition 2.4 Consider two groups (G1, ?) and (G2,~). A mapping f : G1 → G2 is a homomorphism
if ∀a, b,∈ G, f(a ? b) = f(a)~ f(b)

Example 2.3 (R,+)
exp→ (R>0,×) a→ ea, b→ eb, a+ b→ ea+b = ea × eb
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Example 2.4 (C,+)
exp→ (C∗,×)

Define ex+iy := ex × eiy = ex × (cos y + i sin y)
Take z1 = x1 + iy1 and z2 = x2 + iy2

ez1+z2 = ex1+x2+i(y1+y2) = ex1+x2 × ei(y1+y2) = ex1 × ex2 × eiy1 × eiy2 = ex1+iy1 × ex2+iy2 = ez1 × ez2

Remark 2.3 Complex exponential is not bijective. It is surjective but not injective. For example
because ei2πn = 1 ∀n ∈ Z. All the elements of the arg i2πn ∈ G1 go to the same element 1 ∈ G2

Definition 2.5 Let (G1, ?) and (G2,~) be two groups, e the neutral element of G2

Then {g ∈ G1, f(g) = e} is called the kernel of f . Notation ker(f). The kernel consists of all the
the elements of G1 that are mapped to the neutral element of G2.

Remark 2.4 (exercise) The neutral element of G1 is always in ker(f).

Definition 2.6 If a homomorphism (G1, ?)→ (G2,~) is bijective it is called an isomorphism.

Remark 2.5 An inverse mapping to an isomorphism is an isomorphism as well.

Example 2.5

• (G1, ∗) = (R,+).

• (G2, ?) = ([0, 1[, ?). We can view [0, 1[ as R with the identification a ≡ b if (a− b) ∈ Z;
? : x1, x2 → the class of (x1 + x2) that belongs to [0, 1[.

• G3 = {z ∈ C, |z| = 1} with complex multiplication. (G3,×) is group: |z1z2| = |z1||z2| = 1 · 1 = 1
Associativity follows from associativity of complex multiplication. e = 1 ∈ G3, |z−1| =| 1

z |=
1
|1| = 1

• G4 = {Rotations of the plane around the origin by the angle ϕ ∈ [0; 2π[ }, operation = composition.
It is a group: The composition of two rotations is again a rotation. Associativity follows from the
complex representation of similarity transformations (Rϕ ↔ multiplication of complex numbers by
eiϕ). e = R0, R

−1
ϕ = R−ϕ[2π]

• G5 = {matrices of the form Aϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
}, with matrix multiplication.(

cosϕ1 − sinϕ1

sinϕ1 cosϕ1

)
·
(

cosϕ2 − sinϕ2

sinϕ2 cosϕ2

)
=

=

(
cos (ϕ1) cos (ϕ2)− sinϕ1 sinϕ2 − sinϕ1 sinϕ2 − sinϕ1 cosϕ2

sinϕ1 cosϕ2 + cosϕ1 sinϕ2 − sinϕ1 sinϕ2 + cosϕ1 cosϕ2

)
=

=

(
cos (ϕ1 + ϕ2) − sin (ϕ1 + ϕ2)
sin (ϕ1 + ϕ2) cos (ϕ1 + ϕ2)

)
Associativity follows from associativity of addition in R (or from the associativity of the matrix
product, that we have not proven)

e =

(
cos 0 − sin 0
sin 0 cos 0

)
=

(
1 0
0 1

)
(

cosϕ − sinϕ
sinϕ cosϕ

)−1

=

(
cos−ϕ − sin−ϕ
sin−ϕ cos−ϕ

)
(The inverse matrix)

The mapping f12 : G1 → G2, x 7→ t = x − [x] (integer part of x) is a homomorphism but not an
isomorphism.
The mapping f23 : G2 → G3, t 7→ z = ei2πt is an isomorphism.
The mapping f34 : G3 → G4, z 7→ Rarg(z)[2π] is an isomorphism.
The mapping f45 : G4 → G5, Rϕ 7→ Aϕ is an isomorphism.
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A composition of two isomorphisms is an isomorphism as well, thus, the following diagram
recapitulates these mappings. ‘→’ stands for homomorphisms, ‘↔’ for isomorphisms.

G1

  ~~

�� ��

B oo //
OO

��

hh

((

COO

��
D oo //vv

66

E

Remark 2.6 Homo- and iso- morphisms can be defined for any sets with (possibly several) binary
operations. The sets need not satisfy all the groups axioms, or they can satisfy some extra condi-
tions relating different operations (like in rings or fields that we will see soon). This can be also
convenient, for example, to show that some set is not a group/ring/field.

Two more ways to construct groups

Remark 2.7 When we constructed the homomorphism G1 → G2 we identified some elements of
G1. This is a very common way to construct new groups from known ones (factor/quotient groups).

Remark 2.8 Another way to construct new groups is to consider a subset (a subgroup) of a known
group.

Subgroups

Definition 2.7 Consider a group (G, ?). H is a subgroup of G if: H ⊆ G and H itself is a group
with respect to the same operation ?.

Example 2.6 (G, ?) = (Z,+)

• H1 = {0}. The neutral element is a subgroup of any group.

• K = {−1, 0} is not a subgroup (there is no inverse for −1, and (−1) + (−1) /∈ K)

• N is not a subgroup (no inverse for any non-zero element)

• H2={even numbers} is a subgroup

• H3={odd numbers} is not a subgroup (7+5=12 /∈ H3)

Example 2.7
– (G, ?) = (C∗,×), H = {z ∈ C : |z| = 1}.
– (G, ?) = {Rotations of the plane} with composition, H = {Rotations around the origin by a
rational angle}.

Definition 2.8 Let (G, ?) be a group, N ⊆ G be a subgroup of G. N is called a normal subgroup
(fr: groupe distingué) if ∀n ∈ N, ∀g ∈ G, g ∗ n ∗ g−1 ∈ N .

Remark 2.9 If G is commutative i.e. ∀g1, g2 ∈ G, g1 ? g2 = g2 ? g1, then all the subgroups are
normal since g ? n ? g−1 = g ? g−1 ? n = e ? n = n.

Definition 2.9 For any element g ∈G a class of equivalence w.r.t. a normal subgroup N is
{g ? n, n ∈ N} Notation: [g]N or gN , or simply [g]
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Let us define an operation induced by ? on the set of classes: [g1] ? [g2] := [g1 ? g2].

Proposition 2.2 The result of ? doesn’t depend on the choice of a representative in the classes of
g1 and g2.

Proof. Let g̃1 = g1?n, n ∈ N , so g̃1 ∈ [g1]. Then [g̃1?g2] = [g1?n?g2] = [g1?g2?g
−1
2 ?n?g2] = [g1?g2]

Definition 2.10 The set H={[g]} of equivalence classes w.r.t a normal subgroup N with ? is group
itself. It is called a quotient group. Notation : G/N .

Example 2.8 (G, ?) = (Z,+), N = 2Z (even numbers). A class of equivalence {g+n} = {g+2k}.
g1 = 1 { odd numbers }; g2 = 0 { even numbers}. Two equivalence classes even and odd Z/2Z.
The induced operation ?:

? even odd

even even odd

odd odd even

isomorphism−−−−−−−−→
addition(mod2) 0 1

0 0 1

1 1 0

Remark 2.10 For both types of constructions (subgroups or quotient groups) one does not have
to check associativity – it follows automatically from associativity of the operation ? in G.

2.2 Rings and fields

Motivation: many sets have a richer structure than just a group (R,C, vector spaces), i.e several (compatible)

operations could be defined (e.g. (R,+,×))

Definition 2.11 A ring R (anneau, m) is a set R equipped with two operations.
⊕ : R⊗R→ R and ⊗ : R⊗R→ R, satisfying the following axioms:

⊕


1. Associativity of ⊕ : (a⊕ b)⊕ c = a⊕ (b⊕ c)
2. Existence of 0⊕ : a⊕ 0⊕ = a
3. Existence of inverse : a⊕ (−a) = 0⊕
4. Commutativity a⊕ b = b⊕ a

⊗
{

5. Associativity of ⊗ : (a⊗ b)⊗ c = a⊗ (b⊗ c)
6. Distributivity: (a⊕ b)⊗ c = a⊗ c⊕ b⊗ c

Remark 2.11 A ring is a commutative group w.r.t. ⊕ with a compatible multiplication ⊗

Definition 2.12 If in a ring a⊗ b = b⊗ a then a ring is called commutative.

Example 2.9 (R,+,×) is a commutative ring.

Definition 2.13 If in a ring there is an element 1, such that ∀a, 1 ⊗ a = a ⊗ 1 = a, the ring is
called unital or a ring with unity.

Example 2.10 (Z,+,×), (Q,+,×), (R,+,×) – commutative rings with unity.

Remark 2.12 Sometimes the property 5. is not asked, then one studies non-associative rings.

Definition 2.14 A set F is called a field (corps, m) if:
1. (F,⊕,⊗) is a commutative ring with unity
2. ∀a ∈ F , if a 6= 0⊕, ∃a−1 ∈ F : a⊗ a−1 = a−1 ⊗ a = 1⊕.
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Example 2.11 Q, R, C are fields. Z is not a field.

Example 2.12 Z/ 3Z (= Z3)
⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

⊗ 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

⊗ is commutative, e = [1] is a unity; [1]−1 = [1], [2]−1 = [2], thus Z3 is a field.

Example 2.13 (Exercise) {n+m
√

2, (n,m) ∈ Z2} is a ring. {q + p
√

2, (q, p) ∈ Q2} is a field.

2.3 Modular arithmetics

Remark 2.13 Application of group theory : Check digits on a credit card a1...an.
Possible mistakes: mistake at ak (type I) or ak and a1 are inversed (type II).
Does a simple algorithm that finds both types of mistakes exist? No.
w1a1 + ...+ wnan ≡ 0(mod m), wk ± 1.
If the greatest common divisor of wi and m is 1, then we can detect the errors of type I.
If the greatest common divisor of (wi1 − wi2) and m is 1 then we can detect the errors of type II.
If m=10, Z10 has no solutions. Although a more complicated algorithm exists (using non-abelian
groups).

Definition 2.15 For a given positive integer n, two integers a and b are called congruent modulo n
if (a− b) is a multiple of n. Notation: a ≡ b mod n or a ≡ b(mod n), or a ≡ b[n].

Remark 2.14 a ≡ b mod n ⇔ [a] = [b] in Z/nZ. That is why Zn ≡ Z/nZ is often called a
residue system modulo n or a ring of remainders.

Remark 2.15 An interesting property of remainders is that ab ≡ 0 mod n < a ≡ 0(mod n) or
b ≡ 0(mod n). E.g. n = 15: 3× 5 ≡ 15 ≡ 0(mod n).
This effect is called the existence of non-trivial divisors of 0.

Proposition 2.3 If n is not a prime number then Zn contains non-trivial divisors of zero.

Proof. n = lk (l 6= 1 and k 6= 1), so [l][k] = [lk] = [n] = [0]
Then l 6≡ 0(mod n) and k 6≡ 0(mod n), but lk ≡ 0(mod n).

Proposition 2.4 A field never contains non-trivial divisors of zero.

Proof. Suppose that in a field a 6= 0 and b 6= 0 but ab = 0. Multiply both sides by a−1:
a−1ab = a−10 which implies that b = 0 which raises a contradiction.

Theorem 2.2 Z is a field ⇔ n is prime.

Proof.
”⇒” follows from propositions 1 and 2.

”⇐” We need to show that any non-zero element in Zn is invertible. Consider the class of a:
[a] and [2a], [3a], [4a], ..., [(n − 1)a]. These are different non-zero classes in Z. Indeed, if
[la] = [na] and (l, k < n) then la ≡ ka mod n⇔ (l−k)a is a divisor of n. This is impossible
since n is prime. Thus this list contains the class [1] so a is invertible in Zn.
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2.4 Euclidean rings

Definition 2.16 A euclidean ring is a commutative ring without non-trivial divisors of zero and
in addition there is a euclidean norm d on it.
d : R→ Z≥0 ∪ {−∞} s.t d(a) = −∞⇔ a = 0
It permits to define the remainder of the division a = qb+ r and d(r) < d(b)

Example 2.14 Z : d(a) = |a| for a 6= 0 d(0) = −∞.

Proposition 2.5 The euclidean algorithm of computing the greatest common divisor gcd(a, b)

a = q0b+ r1

b = q1r1 + r2

:

:

rn−2 = qnrn−1 + r

rn−1 = qnr + 0

Then r is the gcd of a and b.

Proof.

1. We want to prove that the algorithm is finite.
r1 > r2 > r3 > ... > rn−1 > 0, so the process stops.

2. We want to prove that it leads to gcd(a, b)
This follows from the fact that if a = qb+ r then gcd(a, b) = gcd(b, r)
– Let a = kl1 and b = kl2 then kl1 = kl2 + r and r = k(l1 − l2) (k is a divisor of r)
– Let k be a divisor of r and b. r = km1 and b = km2, then a = k(qm1 + m2) so k is a
divisor of a.
And gcd(r, 0) = r = gcd(a, b).

Proposition 2.6 Bézout’s relations/identities
For a, b ∈ Z there exist x, y ∈ Z such that gcd(a, b) = ax+ by.

Proof. (Exercise) Idea of the proof: Take r1 = a − q0b, and replace r1 in r2 = b − q1r1, then
replace r1 and r2 in r3 = r1 − q2r2, etc. The real proof is by induction (depending on n) and the
statement is rk = xka+ ykb

Remark 2.16 This decomposition is not necessarily unique.

Corollary 2.1 : A minimal subgroup of Z that contains simultaneously two given integer numbers
a and b is of the form kZ, where k = gcd(a, b).
Example: a = 15 and b = 12 ⇒ 3Z; a = 15 and b = 11 ⇒ Z.

Remark 2.17 This theory of remainders could have been a completely abstract science if the RSA
encryption algorithm (Rivest–Shamir–Adleman public key cryptosystem) was not discovered.

The ring Z is a simple example of a euclidean ring. A more interesting one will be seen in the next section,

we will however observe a lot of striking similarity between them.
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2.5 Polynomial functions

Definition 2.17 A polynomial function f is a function R → R (or C → C) such that it can be
written in the form f(x) = a0 + a1x

1 + a2x
2... + anx

n where a0, a1, ...an ∈ R (or C) are called
coefficients of f (some of a0, ...an, or even all can vanish).

Remark 2.18 A polynomial can be defined over any field (or even a ring) K (f : K → K and
a0, ...an ∈ K) but in this course we discuss only K = R or K = C.

The set of polynomials over the field K is denoted K[x].

Definition 2.18 Two polynomials f(x) = a0 +a1x
1 + ...+anx

n and g(x) = b0 + b1x
1 + ...+ bmx

m

are equal if all of their non-zero coefficients coincide : a0 = b0, a1 = b1, ..., an = bn, . . . , am = bm

Definition 2.19 The maximal index of a non-zero coefficient of a polynomial is called its degree
( deg(f)). The degree of a zero polynomial (i.e ai = 0 ∀i) is −∞.

Proposition 2.7 Consider K = R or C. K[x] is a ring with respect to usual addition and multi-
plication of polynomials.

Proof.

1. Associativity and commutativity of +, as well as associativity and commutativity of × follow
directly from associativity and commutativity in K.

2. Inverse with respect to + exists: for f(x) = a0 + a1x+ ...+ anx
n, −f(x) = −a0 + (−a1)x+

...+ (−an)xn. neutral element with respect to + – zero polynomial.

3. Distributivity of × over + :
f(x) = a0 + a1x+ ...+ anx

n

g(x) = b0 + b1x+ ...+ bmx
m

h(x) = c0 + c1x+ ...+ clx
l

Let us compute the coefficients at xk of (f + g)h =? fh+ gh
(a0 + b0)ck + (a1 + b1)ck−1 + (a2 + b2)ck − 2...+ (ak−1 + bk−1)c1 + (ak + bk)c0 =
(by distributivity in R or C)=a0ck + a1ck−1 + ...+ ak−1c1 + akc0︸ ︷︷ ︸

the coefficients at xk in fh

+ b0ck + ...+ bkc0︸ ︷︷ ︸
the coefficients at xk in gh

Proposition 2.8 R[x] (C[x]) is a unital ring without non-trivial divisors of zero.

Proof.

• The neutral element with respect to multiplication is 1 ∈ R[x] (C[x])

• Suppose that f and g are as before and an 6= 0, bm 6= 0 then the coefficient at xn+m in fg is
anbm and since in R (C) there are no non-trivial divisors of zero, anbm 6= 0.

Corollary 2.2 deg(fg) = deg(f) + deg(g)

In what follows we will show that R[x] (C[x]) is an Euclidian ring.

Proposition 2.9 Consider a polynomial f(x) = a0 + a1x
1 + anx

n and a polynomial (x− x0) for
some fixed x0 ∈ K, then there is a unique decomposition of f in the form f = (x− x0)q + r where
q ∈ K[x] (partial quotient), and r ∈ K (remainder).
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Proof : If f ≡ a0 then q = 0 and r = a0.
If deg(f) = n > 0 then deg(q) = n− 1, q = b0 + b1x+ ...+ bn−1x

n−1

(x− x0)q + r = (r − x0b0) + (b0 − x0b1)x+ (b1 − x0b2)x2 + ...+ (bn−2 − x0bn−1)xn−1 + (bn−1)xn

By identification :

an = bn−1
an−1 = bn−2 − x0bn−1
a2 = b1 − x0b2
a1 = b0 − x0b1
a0 = r − x0b0

This gives a unique way to compute bi.

Corollary 2.3 (Horner’s scheme) It is convenient to compute bi starting from bn−1

an an−1 an−2 ... a2 a1 a0

x0 bn−1 bn−2 bn−3 b1 b0 r

Remark 2.19 The Horner’s scheme allows to compute r = f(x0) about twice faster than the
direct computation.

Corollary 2.4 (Bézout’s theorem) f(x)
...(x− x0)⇔ x0 is a root of f (⇔ (x− x0)|f(x))

Theorem 2.3 The number of roots of any polynomial f is ≤ deg(f)

Proof. Induction by the degree
• Base : deg = 0, f(x) = a 6= 0. Number of roots is 0.

• Step : Suppose that the statement is true for k = 0, ..., n−1. Take f(x), deg(f) = n, suppose
that x1, ..., xm are roots, and m > n Bézout ⇒ f(x) = (x − x1)g(x), deg(g) = n − 1 and
g(xi) = 0, i = 2, ...,m impossible by the induction hypothesis.

Definition 2.20 The multiplicity of a root x0 for a polynomial f(x) is the maximal integer k such

that f(x) = (x− x0)kg(x) and g(x0) 6= 0

Remark 2.20 To find m the Horner’s scheme is useful.

Remark 2.21 Analytically in the neighborhood of a root x0 of multiplicity k the polynomial f(x)
behaves as c(x− x0)k. Indeed f(x) = g(x)(x− x0)k, where g(x0) = c 6= 0.

More precisely, f(x) = c(x− x0)k + ¯̄o((x− x0)k) ⇔ lim
x→x0

f(x)−c(x−x0)k

(x−x0)k
= 0.

In particular, if k = 1 the graph of f is tangent to y = c(x− x0),
otherwise if k > 1 the graph is tangent to the abscissa axis with the order of tangency k − 1.
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Remark 2.22 If x0 is a root of multiplicity k > 1 of a polynomial f(x) of degree n, then
f(x0) = f ′(x0) = f ′′(x0) = . . . = f (k−1)(x0) = 0.
Thus, the Taylor series of f(x) at x0 contains at most n− k terms.

Theorem 2.4 The sum of multiplicities of all the roots of a polynomial f is ≤ deg(f).
The sum is equal to deg(f) ⇔ f can be decomposed to linear factors over K.

Proof. By Bézout’s theorem and induction f(x) = (x−x1)k1(x−x2)k2 · . . . · (x−xs)ksg(x), where
x1, . . . , xs are the roots with the multiplicities k1, . . . , ks respectively, and g(x) 6= 0 in K.
deg(f) = k1 + k2 + . . .+ ks + deg(g) ≥ k1 + k2 + . . .+ ks.
deg(f) = k1+k2+. . .+ks⇔ deg(g) = 0⇔ g ≡ const and f(x) = c(x−x1)k1(x−x2)k2 ·. . .·(x−xs)ks .

Corollary 2.5 (Viète’s formulas) If a polynomial f(x) = anx
n+an−1x

n−1 + . . .+a1x+a0 admits
exactly n roots x1, . . . , xn (counting multiplicities), then
an−1 = −an(x1 + . . .+ xn),
an−2 = an(x1x2 + x1x3 + . . .+ xn−1xn)
· · ·
a0 = (−1)nan(x1x2 . . . xn)

Proof. Expand f(x) = an(x− x1)(x− x2) · . . . · (x− xn).

Theorem 2.5 For all f, g ∈ K[x] if g 6= 0 ∃! couple q, r ∈ K[x], such that f = qg + r, deg(r) <
deg(g).

Proof. Consider f(x) = anx
n+an−1x

n−1+. . .+a1x+a0, g(x) = bmx
m+bm−1x

m−1+. . .+b1x+b0.
If m > n q := 0, r := f .

If m ≤ n, f1 := f−c0x
n−mg, where c0 = an/bm, then deg(f1) is at most n−1, f1 = a

(1)
n−1x

n−1 + . . .

f2 := f1 − c1x
n−m−1g, where c1 = a

(1)
n−1/bm, then deg(f2) is at most n− 2, f2 = a

(2)
n−2x

n−2 + . . .
. . .
fk := fk−1−ckxn−m−kg, where ck = a

(k−1)
n /bm, then deg(fk) is at most n−k, f1 = a

(1)
n−1x

n−1 + . . ..
Then f(x) = (c0x

n−m + c1x
n−m−1 + . . .+ cn−m−1x+ xn−m)g(x) + fn−(m−1),

where deg(fn−(m−1)) ≤ m− 1 < deg(g). This proves the existence.
To prove the uniqueness, suppose f = q1g+r1 = q2g+r2, then (q1−q2)g = r2−r1. deg((q1−q2)g) ≥
deg(g), deg(r2 − r1) < g, thus, r2 − r1 = q1 − q2 ≡ 0.

Remark 2.23 This means that K[x] is a Euclidean ring with the Euclidean norm deg(f).

Corollary 2.6 The Euclidean algorithm as well as the Bézout’s identities are valid in K[x].

Remark 2.24 Euclidean algorithm can be used in practice to find gcd(f, g), but for the Bézout’s
relations are easier to reconstruct using the ’undetermined coefficients’.

Factorization and irreducible polynomials.

Definition 2.21 A polynomial f is irreducible over K if it can not be factorized as f = gh for
0 < deg(g) < deg(f), 0 < deg(h) < deg(f).

Remark 2.25 This is an analogue of the definition of prime numbers in the Euclidean ring Z.

Theorem 2.6 (Fundamental theorem of algebra). Any polynomial with real or complex coefficients
admits a complex root in C.
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Remark 2.26 We admit this theorem without proof, since none of the known proofs is purely
algebraic. The name ’fundamental’ here is more historic than scientific.

Corollary 2.7 Any f ∈ C[x] can be decomposed to linear factors over C, i.e. a polynomial is
irreducible over C ⇔ it is of degree 1.

Proof. Induction by deg(f) using the Bézout’s theorem.

Proposition 2.10 If z0 ∈ C is a root of a polynomial f with real coefficients then z̄0 is a root of
f as well.

Proof. f(z̄0) = an(z̄0)n + an−1(z̄0)n−1 + . . .+ a1(z̄0) + a0 = f(z0) = 0

Corollary 2.8 Any irreducible polynomial in R[x] is of degree at most 2.

Corollary 2.9 Any polynomial f in R[x] can be factorized as

f(x) = a(x−x1)k1(x−x2)k2 · . . . · (x−xs)ks(x2 + p1x+ q1)l1(x2 + p2x+ q2)l2 · . . . · (x2 + ptx+ qt)
lt ,

where x2 + pix+ qi do not admit real roots.
In particular, any polynomial in R[x] of degree three admits a real root.

Corollary 2.10 (Partial fractions decomposition)
Consider a polynomial g(x) and a factorization of f(x) to irreducible polynomials:
f(x) = (x− x1)k1 · . . . · (x− xs)ks(x2 + p1x+ q1)l1 · . . . · (x2 + ptx+ qt)

lt, then

g(x)

f(x)
= G(x)+

A1,1

(x− x1)
+

A1,2

(x− x1)2 +. . .+
A1,k1

(x− x1)k1
+. . .+

As,1
(x− xs)

+
As,2

(x− xs)2 +. . .+
As,ks

(x− xs)ks
+

+
B1,1x+ C1,1

(x2 + p1x+ q1)
+ . . .+

B1,l1x+ C1,l1

(x2 + p1x+ q1)l1
+ . . .+ +

Bt,1x+ Ct,1

(x2 + ptx+ qt)
+ . . .+

Bt,ltx+ Ct,lt

(x2 + ptx+ qt)
lt

Remark 2.27 This decomposition is useful to integrate rational functions.

Exercises

1. Given a set with operations on it, check it is a group/ring/field.

2. For a given group find subgroups satisfying some property. For a finite group find all the subgroups.

3. Given a couple of groups/rings/fields check if there is some morphism between them, identify the
kernel of it.

4. Perform arithmetic operations in Zn ⇔ manipulate with congruence relations.

5. Analyze the roots of polynomials (including multiplicities).

6. Decompose a polynomial to irreducible factors (with various applications).

30


