INSA de Rouen

STPI - SIB - M2

Tutorial n^o 6 Polynomials.

Exercise 1 Horner's scheme

- **1.** Perform partial division of $P(x) = x^4 3x^3 + 6x^2 10x + 16$ by (x 4), and compute P(4).
- 2. Compute $Q(x) = x^5 + (1+2i)x^4 (1+3i)x^2 + 7$ at x = -2 i.
- 3. Find the multiplicity of the root x_0 of the following polynomials:
 - a). $x^5 5x^4 + 7x^3 2x^2 + 4x 8$, $x_0 = 2$ b). $x^5 + 7x^4 + 16x^3 + 8x^2 - 16x - 16$, $x_0 = -2$

Decompose them into a product of irreducible polynomials over \mathbb{R} and \mathbb{C} and sketch their graphs.

Exercise 2 Viète's formulas

Compute the product of all the roots and the sum of squares of all the roots of the following polynomials:

a). $3x^5 - x^3 + x + 2$ b). $x^n + ax^{n-1} + b$, $n \ge 3$

Exercise 3 Euclidean division

- **1.** Perform the Euclidean division of the following polynomials:
- a). $x^4 + x^3 3x^2 4x 1 + 2 by x^3 + x^2 x 1$ b). $x^n by x 1$
- **2.** Compute R = gcd(P,Q) for $P(x) = x^4 + 2x^3 x^2 4x 2$, $Q(x) = x^4 + x^3 x^2 2x 2$. Find the linear expression of R : R = PS + QT.
- **3.** Can the polynomial $R(x) = x^4$ be a linear expression R = PS + QT with $P(x) = x^4 2x^3 4x^2 + 6x + 1$, $Q(x) = x^3 5x 3$? If yes, find S and T.
- 4. Find the multiple roots of the following polynomials
 - a). $x^5 10x^3 20x^2 15x 4$ b). $x^7 - 3x^6 + 5x^5 - 7x^4 + 7x^3 - 5x^2 + 3x - 1$.

Find the values of the parameter a, when the polynomial $x^3 - 8x^2 + (13 - a)x - (6 + 2a)$ admits multiple roots.

Exercise 4 Simple fractions

Perform the partial fraction decomposition over \mathbb{C} then where possible over \mathbb{R} .

a).
$$\frac{x^4}{4-9x^2}$$
 b). $\frac{x^4}{4+9x^2}$ c). $\frac{x^3}{x^2+2x+2}$

d).
$$\frac{x^5}{(x-1)(x^2-1)}$$
 e). $\frac{x^2(4x^3+x^2+4x-1)}{(x^2-1)(x^2+1)^2}$

Exercise 5 Back to linear algebra (optional)

- **1.** Give some examples of the subsets of polynomials that form a finite dimensional vector space with respect to the usual operations.
- **2.** Consider the set P_3 of polynomials of degree at most 3. Prove that it is a vector space. What is the dimension of P_3 ? Construct a basis of it. Consider the mapping $\frac{d}{dx}: P_3 \to P_3$, $P(x) \mapsto P'(x)$. Using it's linearity give the matrix of this mapping in the constructed basis. Find $Ker(\frac{d}{dx})$. Show that on P_3 $(\frac{d}{dx})^{\circ 4} \equiv 0$.