INSA de Rouen

STPI - SIB - M2

Tutorial n 0 5 Abstract algebraic notions, modular arithmetic.

Exercise 1 Properties of groups

1. Prove that in a group the neutral element is unique. Prove that for any element its inverse is unique as well.

2. Let $(G_1, \star_1), (G_2, \star_2)$ be groups with neutral elements e_1 and e_2 respectively,

- and $\varphi: G_1 \to G_2$ be a homomorphism.
- a). Prove that $\varphi(e_1) = e_2$.
- b). Prove that $Ker(\varphi) \equiv \{g \in G_1, s.t. \ \varphi(g) = e_2\}$ is a subgroup of G_1 .
- c). *(Optional) Prove that the quotient $G_1/Ker(\varphi)$ is isomorphic to $\varphi(G)$. $(\varphi(G) \equiv \{\bar{g} \in G_2 \text{ s.t. } \exists g \in G_1, \bar{g} = \varphi(g)\}.)$

Exercise 2 Subgroups / morphisms

1. Describe a set D_3 of all the similarity transformations, mapping an equilateral triangle to itself. Prove that D_3 equipped with a composition operation is a group. Give explicitly the multiplication table.

- **2.** Describe a set D_6 of all the similarity transformations, mapping a regular hexagon to itself. Prove that D_6 equipped with a composition operation is a group.
- **3.** Consider the set of all permutations of 3 elements, i.e. the set of bijective mappings from the set $\{1, 2, 3\}$ to itself. How many elements are there in this set? Does this set equipped with the composition operation form a group?
- 4. Consider the set of n-th roots of unity for n = 3, and n = 6. Prove that these sets equipped with complex multiplication form a group. Give explicitly the multiplication table.
- 5. What are the relations between all the groups described above?

Exercise 3 Rings

- **1.** Check that $\mathbb{Z}_{12} \equiv \mathbb{Z}/12\mathbb{Z}$ equipped with the induced addition and multiplication is a ring. Is it a field? Is there any subring of Z_{12} that is a field?
- **2.** Consider $\mathbb{Z}_7 \equiv \mathbb{Z}/7\mathbb{Z}$. Give explicitly the addition and multiplication tables. For any non-zero element construct its multiplicative inverse.
- **3.** Consider \mathbb{R}^3 equipped with component-wise addition and vector product as a multiplication. Does it form a ring?

Exercise 4 Modular arithmetic

- **1.** Congruences
 - a). Prove that the congruence is compatible with arithmetic operations in \mathbb{Z} , i.e. prove that if $a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$, then $a \pm c \equiv b \pm d \pmod{n}$, $ac \equiv bd \pmod{n}$, $a^k \equiv b^k \pmod{n}$. Can we divide the l.h.s. and the r.h.s. of a congruence by the same integer number?
 - b). Compute the remainder of the division of 3^{1789} by 25, of 63^{987654} by 8.
 - c). Compute the last digit of 2014^{2014} , $(2013^{2014})^{2016}$
 - d). Show that for integer a and b, $a^2 + b^2$ is a multiple of 7 if and only if both a and b are.

- **2.** Equations for integer unknowns. We consider an equation ax + by = c with $a, b, c \in \mathbb{Z}$ and we search for its integer solutions $(x, y) \in \mathbb{Z}^2$.
 - a). Show that if a solution exists, then c is necessarily a multiple of gcd(a,b).
 - b). Using the decomposition of gcd(a, b) show that at least one solution exists. Find all the solutions of the equation.
 - c). Find the integer solutions of the equation 5x 9y = 3
 - d). Find the integer solutions of the equation 123x 54y = 3
- **3.** Systems of congruences
 - a). Consider two conditions: $x \equiv a[m]$, $x \equiv b[n]$, with gcd(m, n) = 1. Let $x_0 = bum + avn$, where u and v are the coefficients such that mu + vn = 1 show that x_0 satisfies the system. Show that for any solution x, $x x_0$ is a multiple of n and m. Formulate the method.
 - b). Solve the systems: $\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 1 \pmod{5} \end{cases} \quad \begin{cases} 2x \equiv 3 \pmod{5} \\ 3x \equiv 2 \pmod{4} \end{cases}$
- **4.** Fermat's little theorem. Let p be a prime number.
 - a). Prove that for any p and 0 < k < p, $\binom{p}{k}$ is a multiple of p.
 - b). Prove that for all integer couples (x, y), $(x + y)^p \equiv x^p + y^p \pmod{p}$
 - c). Deduce that for any integer $a, a^p \equiv a \pmod{p}$. (Induction may be helpful).
 - d). Show that if a is not a multiple of p, the above statement is equivalent to $a^{p-1} \equiv 1 \pmod{p}$.