STPI - SIB - M2

Tutorial no 1 Complex numbers

Complex numbers and equations

Exercise 1

Simplify the following complex numbers, cast them into algebraic form z = x + iy.

a).
$$(1+3i)\overline{(7-i)}$$
 b). $\frac{9+2i}{3-2i}$ c). $\frac{1+i\sqrt{3}}{\sqrt{3}+i}$ d). $\frac{\sqrt{7}+5i}{2\sqrt{7}-2i}+\frac{2\sqrt{7}-2i}{\sqrt{7}+5i}$ e). $e^{i\frac{\pi}{4}}e^{i\frac{\pi}{3}}$

Exercise 2

Cast the following complex numbers into trigonometric form $z = r(\cos \varphi + i \sin \varphi), \quad r \ge 0, \varphi \in [0, 2\pi[.$

a).
$$1+i$$
 b). $\sqrt{3}+i$ c). $\frac{\sqrt{3}+i}{1+i}$ d). $\frac{1+i\sqrt{3}}{\sqrt{3}+i}$ e). $\frac{5+11i\sqrt{3}}{7-4i\sqrt{3}}$

Exercise 3

Compute the following complex numbers depending on $n \in \mathbb{N}$ and cast them into algebraic form.

a).
$$\left(\frac{1+i\sqrt{3}}{\sqrt{3}+i}\right)^n$$
 b). $\left(\frac{5+11i\sqrt{3}}{7-4i\sqrt{3}}\right)^n$

Exercise 4

Solve the following equations in
$$\mathbb{C}$$
.
a). $z^6 = 1$ b). $z^5 - z = 0$ c). $(1 + i\sqrt{3})z^4 - 3 = 0$ d).* $(z + i)^n = (z - i)^n$, $n \ge 2$

Exercise 5

The goal of this exercise is to solve in \mathbb{C} the equation

$$z^{3} - (6-i)z^{2} + (13-i)z - 10 - 2i = 0$$
 (*)

- 1. Knowing that it exists, find the real solution z_0 of the equation (*).
- **2.** Find $a, b \in \mathbb{C}$ such that for all $z \in \mathbb{C}$ the following identity holds:

$$z^{3} - (6-i)z^{2} + (13-i)z - 10 - 2i = (z - z_{0})(z^{2} + az + b).$$

(Later on the lecture we will formulate a more general decomposition result).

3. Solve completely the equation (*) in \mathbb{C} .

Complex numbers and trigonometric functions

Exercise 6

For $\alpha \in \mathbb{R}$ express $\sin 3\alpha, \cos 3\alpha, \sin 4\alpha, \cos 4\alpha$ as functions of $\sin \alpha$ and $\cos \alpha$.

Exercise 7

- 1. For $x \in \mathbb{R}$ express $\cos 5x$ as a functions of $\cos x$.
- 2. Deduce that $\cos(\frac{\pi}{10})$ is a solution of $16x^4 20x^2 + 5 = 0$
- 3. Compute $\cos^2 \frac{\pi}{10}$
- 4. Deduce the values of $\cos \frac{\pi}{5}$ and $\sin \frac{\pi}{5}$