International workshop on Integrability in Dynamical Systems and Control 14-16 November 2012, Rouen, France

heliminary list of speakers

Alain Alboury (Paris) Elie Assémat (Dijon) Boris Bardin (Moscow) Bernard Bonnard (Dijon) Yuri Fedorov (Barcelona) Jean-Pierre Françoise (Paris) Božidar Jovanović (Belarade) Clémence Labrousse (Paris) Jean-Pierre Marco (Paris) Vladimir Matveev (Jena)

Eva Miranda (Barcelona) Juan Morales-Ruiz (Madrid) Andriy Panasyuk (Olsztyn) Jean-Pierre Ramis (Toulouse) Vladimir Roubtsov (Angers) Dmitry Sinitsyn (Moscow) Alexei Tsyqvintsev (Lyon) Jacques-Arthur Weil (Limoges) Nauven Tien Zung (Toulouse)

The workshop is organized at the National Institute of Applied Sciences - INSA de Rouen (V. Salnikov, W. Respondek, A. Maciejewski) ormation and registration places visit our http://math.univ-lyon1.fr/~salnikov/disco/

INVARIANTS I

J P Ramis

ISO-IRREGULAR DEFORMATIONS OF LINEAR O.D.E. and DYNAMICS OF PAINLEVÉ EQUATIONS

Jean-Pierre Ramis

Académie des Sciences and Institut de Mathématiques de Toulouse

International workshop on Integrability in Dynamical Systems and Control I.N.S.A. de Rouen, 14-16 novembre, 2012

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

PRESENTATION

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We will sketch a *work in progress* in collaboration with Emmanuel Paul and Julio Rebelo, based on some results due to several people, mainly:

Ph. Boalch, S. Cantat, M. A. Inaba, K. Iwasaki, M. Jimbo, F. Loray, B. Malgrange, T. Miwa, M. van der Put, M-H Saito, K. Ueno, E. Witten,...

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

-2

In the present state it is mainly a *PROGRAM*.

Painlevé differential equations

$$P_l: \quad \frac{d^2y}{dt^2} = 6y^2 + t.$$

$$P_{II}: \quad \frac{d^2y}{dt^2} = 2y^3 + ty + \alpha.$$

$$P_{III}: \quad \frac{d^2y}{dt^2} = \frac{1}{y}(\frac{dy}{dt})^2 - \frac{1}{t}\frac{dy}{dt} + \frac{1}{t}(\alpha y^2 + \beta) + \gamma y^3 + \frac{\delta}{y}.$$

$$P_{IV}: \quad \frac{d^2y}{dt^2} = \frac{1}{2y}(\frac{dy}{dt})^2 + \frac{3}{2}y^3 + 4ty^2 + 2(t^2 - \alpha)y + \frac{\beta}{y}$$

$$P_V: \quad \frac{d^2y}{dt^2} = \left(\frac{1}{2y} + \frac{1}{y-1}\right)\left(\frac{dy}{dt}\right)^2 - \frac{1}{t}\frac{dy}{dt} \\ + \frac{(y-1)^2}{t}\left(\alpha y + \frac{\beta}{y}\right) + \gamma \frac{y}{t} + \delta \frac{y(y+1)}{y-1}.$$

$$\begin{aligned} P_{VI}: \quad \frac{d^2 y}{dt^2} &= \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t} \right) \left(\frac{dy}{dt} \right)^2 - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t} \right) \frac{dy}{dt} \\ &+ \frac{y(y-1)(y-t)}{t^2(t-1)^2} \left(\alpha + \beta \frac{t}{y^2} + \gamma \frac{t-1}{(y-1)^2} + \delta \frac{t(t-1)}{(y-t)^2} \right). \end{aligned}$$

With
$$\alpha, \beta, \gamma, \delta \in \mathbf{C}$$
.

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

큰

Painlevé differential equations

$$\begin{array}{ll} P_{l}: & \frac{d^{2}y}{dt^{2}} = 6y^{2} + t. \\ P_{ll}: & \frac{d^{2}y}{dt^{2}} = 2y^{3} + ty + \alpha. \\ P_{lll}: & \frac{d^{2}y}{dt^{2}} = \frac{1}{y}(\frac{dy}{dt})^{2} - \frac{1}{t}\frac{dy}{dt} + \frac{1}{t}(\alpha y^{2} + \beta) + \gamma y^{3} + \frac{\delta}{y}. \\ P_{lV}: & \frac{d^{2}y}{dt^{2}} = \frac{1}{2y}(\frac{dy}{dt})^{2} + \frac{3}{2}y^{3} + 4ty^{2} + 2(t^{2} - \alpha)y + \frac{\beta}{y}. \\ P_{V}: & \frac{d^{2}y}{dt^{2}} = (\frac{1}{2y} + \frac{1}{y-1})(\frac{dy}{dt})^{2} - \frac{1}{t}\frac{dy}{dt} \\ & \quad + \frac{(y-1)^{2}}{t}(\alpha y + \frac{\beta}{y}) + \gamma \frac{y}{t} + \delta \frac{y(y+1)}{y-1}. \\ P_{Vl}: & \frac{d^{2}y}{dt^{2}} = \frac{1}{2}(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t}))(\frac{dy}{dt})^{2} - (\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t})\frac{dy}{dt} \\ & \quad + \frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}(\alpha + \beta \frac{t}{y^{2}} + \gamma \frac{t-1}{(y-1)^{2}} + \delta \frac{t(t-1)}{(y-t)^{2}}). \\ & \text{With } \alpha, \beta, \gamma, \delta \in \mathbf{C}. \\ \text{Non-linear second order O.D.E. whose all} \\ moving singularities are poles (Painlevé property). \\ Fixed singularities: \infty \text{ for } P_{l}, P_{l}, \text{ plus 0 for } P_{lll}, P_{lY}, P_{V}, \text{ plus} \end{array}$$

0, 1 for P_{VI} .

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Figure: Paul Painlevé 1863-1933

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Painlevé differential equations

- P_I, P_{II}, P_{III}: Painlevé.
- P_{IV}, P_V : Gambier.

P_{VI}: Richard Fuchs (son of Lazarus Fuchs), in relation with *isomonodromic deformations* of linear O.D.E..

Painlevé equations are (up to equivalence) all the non-linear second order O.D.E. whose all *moving singularities* are *poles* (Painlevé property) and which are not reducible to "already known cases" (linear equations, Riccati equations, differential equation of elliptic functions).

Property of *"irreducibility"*: *new transcendental functions*, proved by Nishioka (1988) and H. Umemura (1989).

The Painlevé equations except P_{VI} were discovered in relation with the *Painlevé property*.

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

A misunderstanding

The Painlevé equations, except P_{VI} , were discovered in relation with the *Painlevé property*. At Painlevé time there was some interest in the so-called Painlevé property, in particular (I think...) in relation with the success of S. Kowalevska for the problem of the top. Today Painlevé property remains quite popular, due in particular (I think...) to the fact that there exists an *effective test*.

BUT the fact that so important equations (the O.D.E. of the "special functions of the XX-th century"...) were discovered starting from Painlevé property is a chance (2 is small !). The really important point is NOT the Painlevé property but the fact that all Painlevé equations translate phenomena of isomonodromic (or more generally iso-irregular: Garnier) deformations of linear O.D.E.. All O.D.E. coming from isomonodromic (or more generally iso-irregular) deformations have the Painlevé property (Malgrange, Miwa...) but the converse can be false for equations of order > 2. <ロト <回ト < 回ト < 回ト : -2

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

The dynamics of the Painlevé equations

Our project is to use the "true origin" of the Painlevé equations, that is the fact that they translate phenomena of isomonodromic (or more generally iso-irregular) deformations of linear O.D.E., to understand their dynamics.

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > の <

Our main purpose is to "understand the dynamics" of the *six* Painlevé equations, in particular to be able *to compute their non-linear differential Galois groupoids in Malgrange sense*. We conjecture that, for "generic values" of the parameters, these groupoids are "as big as possible": *conservation of the area* (as for P_l , a result of G. Casale).

The results are known for P_{VI} (Cantat, Loray, Iwasaki, M.H. Saito...) and our idea is to "imitate" the method for the remaining equations P_V , P_{IV} , P_{III} , P_{II} , P_I

In the case of P_{VI} one *translates*, via the Riemann-Hilbert correspondance, the initial *transcendental* problem (the study of the dynamics of the equation, or "equivalently" of the study of the *non-linear* monodromy around $0, 1, \infty$) into a *purely topological problem*: the study of the dynamics induced by a *braid group* on a *character variety*. The character variety is an *affine algebraic surface* (with a complex Poisson structure) and the action is *polynomial* and *explicit*.

INVARIANTS I ...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

(ロ) (部) (音) (音) (音) (音) (の)

In the case of P_{VI} one *translates*, via the Riemann-Hilbert correspondance, the initial *transcendental* problem into a *purely topological problem*: the study of the dynamics induced by a *braid group* on a *character variety*. The character variety is an *affine algebraic surface* (with a complex symplectic structure) and the action is *polynomial* and *explicit*.

In the case of P_V , P_{IV} , P_{III} , P_{II} , P_I , we can *translate*, via the irregular Riemann-Hilbert correspondance (in Martinet-Ramis style), the *transcendental* initial problem into a new one. This new problem is no longer purely topological. It is necessary to replace the four punctured sphere by some *irregular curves*, the braid group by some *wild braid groups* and the character varieties by some *wild character varieties* (replacing *representations* of a *fundamental group* by *representations* of a *wild fundamental groupoid*).

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

More precisely:

– in the case of P_{VI} , the *Painlevé flow* is *conjugated* to the *isomonodromy flow* on a fibre bundle of *character varieties*;

in the case of the others Painlevé equations, the *wild Painlevé flow* (i.e. the Painlevé flow "plus" the Stokes
 actions) is *"conjugated"* to the *wild isomonodromy flow* on
 a fibre bundle of *wild character varieties*;

We will explain the mechanism in a quite general situation and afterwards we will give an idea of what is happening in the particular case of the irregular Painlevé equations using some recent results of M. van der Put and M.H. Saito.

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

A dream....

Based on ideas of the Japanese school (Iwasaki...) for the classic case and of Ph. Boalch for the wild case (using Martinet-Ramis approach)

CLAIM (conjectural)

Many "interesting" algebraic dynamical systems "express" iso-irregular deformations of linear connections.

Then it is possible to *"compute effectively their dynamics"* (by hand or using computer algebra) as (Poisson) actions of braid goups or wild braid groups on (Poisson) algebraic varieties.

This opens the possibility to compute differential invariants and *the Malgrange differential groupoid* for such systems.

Chaos seems to be more or less the rule and to call "integrable" such systems (it is the "classical" terminology) is not so appropriate !

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Character varieties and the dynamics of Painlevé VI Equations

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

- Character varieties and the dynamics of Painlevé VI Equations
- Invariants of meromorphic O.D.E.

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ● 回 ● の Q (

- Character varieties and the dynamics of Painlevé VI Equations
- Invariants of meromorphic O.D.E.
- Braid groups and mapping class groups

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

- Character varieties and the dynamics of Painlevé VI Equations
- Invariants of meromorphic O.D.E.
- Braid groups and mapping class groups
- Reductive groups and generalized braids groups

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

- Character varieties and the dynamics of Painlevé VI Equations
- Invariants of meromorphic O.D.E.
- Braid groups and mapping class groups
- Reductive groups and generalized braids groups
- Wild character varieties, braiding of Stokes data and iso-irregular deformations

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

- Character varieties and the dynamics of Painlevé VI Equations
- Invariants of meromorphic O.D.E.
- Braid groups and mapping class groups
- Reductive groups and generalized braids groups
- Wild character varieties, braiding of Stokes data and iso-irregular deformations

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

-2

 Application to the "dynamics" of the Painlevé equations

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

- Character varieties and the dynamics of Painlevé VI Equations
- Invariants of meromorphic O.D.E.
- Braid groups and mapping class groups
- Reductive groups and generalized braids groups
- Wild character varieties, braiding of Stokes data and iso-irregular deformations

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

-2

- Application to the "dynamics" of the Painlevé equations
- Non linear Galois theory and integrability

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

- Character varieties and the dynamics of Painlevé VI Equations
- Invariants of meromorphic O.D.E.
- Braid groups and mapping class groups
- Reductive groups and generalized braids groups
- Wild character varieties, braiding of Stokes data and iso-irregular deformations
- Application to the "dynamics" of the Painlevé equations
- Non linear Galois theory and integrability
- Open problems

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

CHARACTER VARIETIES

and

THE DYNAMICS OF PAINLEVÉ VI EQUATIONS

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Following:

S. Cantat, M. A. Inaba, K. Iwasaki, F. Loray, M-H Saito,...

イロト イヨト イヨト イヨト

-2

Character varieties

Let *X* be a compact Riemann surface *X* (of genus *g*) and a_1, \ldots, a_m marked points on it (m = 0 is allowed). Let *G* be a linear complex algebraic group *G* ($G = GL_n(\mathbf{C})$, $G = SL_n(\mathbf{C})$,...).

We consider the set of representations $\pi_1(X \setminus \{a_1, \ldots, a_m\}, \star) \to G, \star \in X \setminus \{a_1, \ldots, a_m\}$ being a fixed base point, modulo the adjoint action of *G*

(equivalence of representations):

 $Hom(\pi_1(X \setminus \{a_1, ..., a_m\}), G)/G,$

 $Hom := Hom_{gr}$. It is a *character variety*.

The quotient is in some *algebraic sense* (categorical quotient, Jordan equivalence), I skip the details: for the irreducible case there is no problem...

We suppose now that $X := P^1(\mathbf{C}) \approx S^2$ and m > 0 and we denote the character variety $\chi(S_m^2)$. Then the fundamental group $\pi_1(P^1(\mathbf{C}) \setminus \{a_1, \ldots, a_m\})$ is the (non abelian) free group generated by m - 1 (homotopy classes of) loops $\gamma_1, \ldots, \gamma_{m-1}$:

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

We suppose now that $X := P^1(\mathbf{C}) \approx S^2$ and m > 0 and we denote the character variety $\chi(S_m^2)$. Then the fundamental group $\pi_1(P^1(\mathbf{C}) \setminus \{a_1, \ldots, a_m\})$ is the (non abelian) free group generated by m - 1 (homotopy classes of) loops $\gamma_1, \ldots, \gamma_{m-1}$: we can choose m - 1 points $\tilde{a}_1, \ldots, \tilde{a}_{m-1}$ (respectively) "very near" of $a_1, \ldots, a_{m-1}, m - 1$ paths $\delta_1, \ldots, \delta_{m-1}$ (from \star to $\tilde{a}_1, \ldots, \tilde{a}_{m-1}$) and m - 1 loops $\tilde{\gamma}_1, \ldots, \tilde{\gamma}_{m-1}$ based at \tilde{a}_i and turning "one time" around a_i , then:

$$\gamma_i := \delta_i \, \tilde{\gamma}_i \, \delta_i^{-1}.$$

We can identify a representation ρ with:

 $(M_1 := \rho(\gamma_1), \dots, M_{m-1} := \rho(\gamma_{m-1})) \in G^{m-1}$ and the character variety $\chi(S_m^2)$ with G^{m-1}/G (adjoint action).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

There is an alternative description, replacing the fundamental group based at \star , by a fundamental groupoid "based at $\star, \tilde{a}_1, \ldots, \tilde{a}_{m-1}$ ". Then a representation ρ is the data of $\rho(\delta_1) \in G, \ldots, \rho(\delta_{m-1}) \in G$ and $\rho(\tilde{\gamma}_1) \in G, \ldots, \rho(\tilde{\gamma}_{m-1}) \in G$. We can identify the character variety $\chi(S_m^2)$ with G^{2m-2}/G^m .

Variant:

We can "add" to X the *real blow up* of each point a_1, \ldots, a_{m-1} , that is m-1 *circles* S^1 and choose points $\tilde{a}_1, \ldots, \tilde{a}_{m-1}$ respectively on each circle ("tangential points"). We get a m-1 pointed surface \tilde{X} (with a boundary).

In order to parametrize the character variety, we can change the "basis" of the fundamental groupoid, leaving the $\tilde{\gamma}_i$ *fixed* and changing the choice of the (homotopy classes) of the δ_i .

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

The case of the four punctured sphere

Let $S_4^2 = P^1(\mathbf{C}) \setminus \{a_1, a_2, a_3, a_4\}$ and $G := Sl_2(\mathbf{C})$.

Let $\rho : \pi_1(S_4^2) \to Sl_2(\mathbf{C})$. The knowledge of the matrices $\rho(\gamma_1), \rho(\gamma_2), \rho(\gamma_3), \rho(\gamma_4)$ modulo, for each one, the adjoint action of $Sl_2(\mathbf{C})$ is equivalent to the knowledge of the four parameters:

 $a := \operatorname{Tr}(\rho(\gamma_1)), b := \operatorname{Tr}(\rho(\gamma_2)), c := \operatorname{Tr}(\rho(\gamma_3)), d := \operatorname{Tr}(\rho(\gamma_2)).$ We can associate to ρ *three more parameters*:

 $x := \text{Tr}(\rho(\gamma_1\gamma_2)), y := \text{Tr}(\rho(\gamma_2\gamma_3)), x := \text{Tr}(\rho(\gamma_3\gamma_1)),$ invariant under *overall* conjugation.

We have $\rho(\gamma_1)\rho(\gamma_2)\rho(\gamma_3)\rho(\gamma_4) = I$, the knowledge of the *representation* ρ is equivalent to the knowledge of the *three matrices* $\rho(\gamma_1), \rho(\gamma_2), \rho(\gamma_3) \in Sl_2(\mathbb{C})$. We can identify $\operatorname{Rep}(S_4^2, Sl_2(\mathbb{C}))$ with the *affine variety* $(Sl_2(\mathbb{C}))^3$ (of dimension 9).

The *polynomial* map: χ : Rep $(S_4^2, Sl_2(\mathbf{C})) \rightarrow \mathbf{C}^7$ defined by $\rho \mapsto \chi(\rho) := (a, b, c, d, x, y, z)$ is invariant under (overall) conjugation. **INVARIANTS I...**

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

The case of the four punctured sphere: the character variety

The *polynomial* map: χ : Rep $(S_4^2, Sl_2(\mathbf{C})) \rightarrow \mathbf{C}^7$ defined by $\rho \mapsto \chi(\rho) := (a, b, c, d, x, y, z)$ is invariant under conjugation. The components of χ satisfy the *quartic* equation:

$$x^{2} + y^{2} + z^{2} + xyz = Ax + By + Cz + D$$
,

where

$$A := ab + cd, B := bc + ad, C := ac + bd$$

 $D := 4 - a^2 - b^2 - c^2 - d^2 - abcd.$

The family $C[\operatorname{Rep}(S_4^2, Sl_2(C))]^{Sl_2(C)}$ of polynomial functions on $\operatorname{Rep}(S_4^2, Sl_2(C))$ invariant par $Sl_2(C)$ is generated by the components of χ , the *algebraic quotient* $\operatorname{Rep}(S_4^2, Sl_2(C))/Sl_2(C)$, that is the *character variety*, is isomorphic to the hypersurface of C^7 defined by the above equation: a *six-dimensional quartic*.

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

The algebraic quotient $\operatorname{Rep}(S_4^2, Sl_2(\mathbf{C}))/Sl_2(\mathbf{C})$, that is the *character variety*, is isomorphic to the hypersurface of \mathbf{C}^7 defined by the equation:

$$F(x, y, z) = x^2 + y^2 + z^2 + xyz - (Ax + By + Cz + D) = 0,$$

a six-dimensional quartic.

If we fix the parameters a, b, c, d ("local monodromies" at the singular points up to conjugation), and therefore A, B, C, D, then x, y, z belongs to a *cubic surface* $S_{(A,B,C,D)}$ of \mathbf{C}^3 .

There is a *volume form*:

$$\Omega := \frac{dx \wedge dy}{2z + xy - C} = \frac{dy \wedge dz}{2x + yz - A} = \frac{dz \wedge dx}{2y + zx - B}$$

on (the smooth part of) this surface $(\Omega \wedge dF = dx \wedge dy \wedge dz)$. It defines a *complex symplectic structure*.

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

There is an *area form*:

$$\Omega := \frac{dx \wedge dy}{2z + xy - C} = \frac{dy \wedge dz}{2x + yz - A} = \frac{dz \wedge dx}{2y + zx - B}$$

on (the smooth part of) the cubic surface $S_{(A,B,C,D)}$. It defines a *complex symplectic structure*.

This is a particular case of a very general result: there is a *complex canonical Poisson structure* on the *character* varieties and on the irregular character varieties and the corresponding symplectic foliations corresponds to the fixation of local data at the singular points: Ph Boalch,... The *dynamics* induced by *braiding groups* and *wild* braiding groups on the character varieties respects these foliations, they induces *algebraic symplectic dynamics* on algebraic varieties (in the present case cubic surfaces). One our main projects is a systematic study of such dynamics, beginning with the "simplest cases" (!!!) related to the Painlevé équations P_V , P_{IV} , P_{III} , P_{IIII} , P_{IIII} , P_{III} , P_{IIIII , P_{IIIII , P_{IIII} , P_{IIIIII , P_{IIIII , P_{IIIII , P

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

(ロ) (部) (モ) (モ) (モ) (ホーマーク)

Monodromy of a linear differential system

Let (Δ) : $\frac{dY}{dz} = A(z)Y$ be a complex linear differential system of rank *n* on a Riemann surface *X* (*z* local coordinate), with *A* an *holomorphic* matrix. More generally we can suppose *A meromorphic* and replace *X* by $X \setminus S$, *S* being the *singular set* of *A*.

If $a, b \in X$ and if γ is a continuous path from a to b, we can *extend analytically* along γ any *local solution at a* and we get a *local solution at b*, the result depends only on the *homotopy class* $[\gamma]$ of γ . We get a linear isomorphism $M_{\gamma} : \text{Sol}_{a} \rightarrow \text{Sol}_{b}$. If γ is a *loop* (a = b), then M_{γ} is a linear automorphism of the complex vector space Sol_{a} , the monodromy of γ . We get a map:

 $\rho: \pi_1(X, a) \rightarrow GL(Sol_a)$

It is an homomorphism of groups (opposite structure on π_1), the *monodromy representation* associated to the system (Δ).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

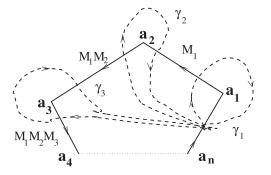


Figure 2. Fuchsian Riemann-Hilbert problem.

Figure: Monodromy

イロト イヨト イヨト イヨト

æ.,

Fuchsian systems on the Riemann sphere, Riemann-Hilbert map

We consider a logarithmic connection ∇ on a trivial rank n complex vector bundle on the Riemann sphere with singurarities at a_1, \ldots, a_m ($m \ge 2$). Choosing a coordinate z on the sphere, with $a_m = \infty$, this amounts to giving a differential system:

$$(\Delta): \frac{dY}{dz} = A(z)Y, \text{ with } A(z):=\sum_{i=1,\dots,m-1}\frac{A_i}{z-a_i}$$

the matrices A_i (residues) being constant. The residue at $a_m = \infty$ is $A_m := -A_1 - \ldots - A_{m-1}$.

The Riemann Hilbert map associates to the Fuchsian system (Δ) its *monodromy representation*

 $\rho: \pi_1(\mathcal{P}^1(\mathbf{C}) \setminus \{a_1, \ldots, a_m\}, \star) \to GL_n(\mathbf{C}).$

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Riemann-Hilbert map, Riemann-Hilbert problem

We choose simple loops γ_i around a_i , based at \star , such that $\gamma_1 \dots \gamma_m$ is contractile.

We set $\mathbf{a} := (a_1, \dots, a_m)$, $\mathbf{A} := (A_1, \dots, A_m)$, then $RH_{\mathbf{a}}$ amounts to the map:

 $\{\mathbf{A} | A_1 + \dots + A_m = 0\} \rightarrow \{(M_1, \dots, M_m) | M_m \cdots M_1 = I\},\$ where $M_i := \rho(\gamma_i).$

If an *irreducible* representation ρ is given, by

 $\mathbf{M} := (M_1, \dots, M_m)$, with $M_m \cdots M_1 = I$, then there exists \mathbf{A} , with $A_1 + \cdots + A_m = 0$, such that $RH_{\mathbf{a}}(\mathbf{A}) = \mathbf{M}$. The (strong) *Riemann-Hilbert problem* admits a solution.

It is important to notice that the Riemann-Hilbert map is in general *transcendental* (cf. the case of m = 3: the *hypergeometric functions*). Therefore it is not so surprising that, as we will see, *RH* can transform a *transcendental dynamics* into an *algebraic dynamics*.

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト 三 臣 ・

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Isomonodromic deformations

If we move $\mathbf{a} \in P^1(\mathbf{C})$, the points a_1, \ldots, a_m remaining *distinct*, the *topology* of $P^1(\mathbf{C}) \setminus \{a_1, \ldots, a_m\}$ does not change, but, if $m \ge 4$, the *complex structure* changes, there are *moduli*. The basis of the deformation is $\mathcal{B} := \mathbf{C}^m \setminus \bigcup_{i \ne j} \Delta_{ij}$, where $\Delta_{ij} := \{x_i = x_j\}$.

Schlesinger studied the following problem, the problem of *isomonodromic deformations*: is it possible to vary the matrices **A** as one move $\mathbf{a} \in \mathcal{B}$ in order to realise "the same monodromy data" **M** (up to overall conjugation).

Locally this makes sense, starting from $\mathbf{a}^0 := (a_1^0, \dots, a_m^0)$ one can use *the same loops* to generate:

 $\pi_1(P^1(\mathbf{C}) \setminus \{a_1^0, \ldots, a_m^0\}, \star)$ and $\pi_1(P^1(\mathbf{C}) \setminus \{a_1, \ldots, a_m\}, \star)$, if **a** is "sufficiently near" of **a**⁰.

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Isomonodromic deformations and Schlesinger equations

Schlesinger discovered that if the matrices A_i satisfy the following differential equations, then the monodromy data is localy preserved (up to overall conjugation):

$$\frac{\partial A_i}{\partial a_j} = \frac{[A_i, A_j]}{a_i - a_j}, \quad \frac{\partial A_i}{\partial a_i} = -\sum_{j \neq i} \frac{[A_i, A_j]}{a_i - a_j}$$

Conversely, in the generic case, an isomonodromic deformation satisfies the Schlesinger equations.

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Figure: Ludwig Schlesinger 1864-1933, follower and son-in-law of Lazarus Fuchs

Schlesinger equations and P_{VI}

We suppose that m = 4 and that the A_i are *trace free* rank two matrices: $A_i \in sl_2(\mathbf{C})$.

Using the action of the *Möbius group* on $P^1(\mathbf{C})$, we can suppose that $a_1 = 0$, $a_2 = t$, $a_3 = 1$, $a_4 = \infty$. Then the Schlesinger equations are:

$$\frac{\partial A_1}{\partial t} = \frac{[A_2, A_1]}{t} \quad \frac{\partial A_2}{\partial t} = \frac{[A_1, A_2]}{t} + \frac{[A_3, A_2]}{t-1} \quad \frac{\partial A_3}{\partial t} = \frac{[A_2, A_3]}{t-1}.$$

This is a differential system with the unknown function (A_1, A_2, A_3) (9 scalar unknown functions).

The Schlesinger system preserves $A_4 = -A_1 - A_2 - A_3$. We fix the eigenvalues of A_i : $\pm \theta_i/2$ (i = 1, 2, 3) and we suppose that $A_4 = -A_1 - A_2 - A_3$ is *diagonalizable*. Then we can conjugate the system such that

$$A_4 = \text{Diag}(\theta_4/2, -\theta_4/2).$$

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Schlesinger equations and P_{VI}

The Schlesinger system preserves $A_4 = -A_1 - A_2 - A_3$. We fix the eigenvalues of A_i : $\pm \theta_i/2$ (i = 1, 2, 3) and we suppose that $A_4 = -A_1 - A_2 - A_3$ is *diagonalizable*. Then we can conjugate the system such that

 $A_4 = \text{Diag}(\theta_4/2, -\theta_4/2).$

It is possible to choose a pair (y, x) of conjugate coordinates on the space of the entries of A_1, A_2, A_3 such that the Schlesinger system is equivalent to a differential system on (y, x). There is a good choice such that, eliminating x, we get an equivalent second order differential equation which is a Painlevé VI equation with a convenient choice of parameters.

Explicitly, using the fact that the (1,2) entry of A_4 is 0, we see that the (1,2) entry of $z(z-1)(z-t)\sum_{i=1}^{3} \frac{A_i}{z-a_i}$ is a *degree one* polynomial in *z*. We define y(t) as the unique zero of this polynomial (Jimbo-Miwa).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Another parametrization of P_{VI}

$$\begin{aligned} P_{VI}(\theta): \\ \frac{d^2y}{dt^2} &= \frac{1}{2}(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t}))(\frac{dy}{dt})^2 - (\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t})\frac{dy}{dt} \\ + \frac{y(y-1)(q-t)}{t^2(t-1)^2}(\frac{(\theta_4 - 1)^2}{2} - \frac{\theta_1^2}{2}\frac{t}{y^2} + \frac{\theta_3^2}{2}\frac{t-1}{(y-1)^2} + \frac{1-\theta_2^2}{2}\frac{t(t-1)}{(y-t)^2}), \end{aligned}$$

Each solution $t \mapsto y(t)$ extends analytically as a *meromorphic* function on the universal covering of $P^1(\mathbf{C}) \setminus \{0, 1, \infty\}$: the Painlevé property.

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

The space of initial conditions of P_{VI}

The naive phase space of $P_{VI}(\theta)$ is $(P^1(\mathbf{C}) \setminus \{0, 1, \infty\}) \times \mathbf{C}^2$:

 $(t,q(t),q'(t))\in {P^1(\mathbf{C})}\setminus \{0,1,\infty\}) imes {\mathbf{C}}^2$

The "good" phase space is a convenient semi-compactification, a fiber space

 $\mathcal{M}(\theta) \to P^1(\mathbf{C}) \setminus \{0, 1, \infty\},$

whose fiber at any point $t_0 \in P^1(\mathbf{C}) \setminus \{0, 1, \infty\}$ is the *Okamoto space of initial conditions*: the Hirzebruch surface F_2 blown-up at 8 points minus some divisor, a union of 5 rational curves (Kazuo Okamoto 1979). The Painlevé foliation gives a local *analytic* trivialisation of the bundle (which is not algebraically locally trivial).

Then the *non-linear monodromy* of $P_{VI}(\theta)$ is given by a representation:

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

The Painlevé foliation gives a local *analytic* trivialisation of the bundle:

 $\mathcal{M}(\theta) \to P^1(\mathbf{C}) \setminus \{0, 1, \infty\},\$

Then the *non-linear monodromy* of $P_{VI}(\theta)$ is given by a representation:

 $\pi_1(\boldsymbol{P}^1(\mathbf{C})\setminus\{0,1,\infty\},t_0)\to \textit{Diff}(\mathcal{M}(\theta),t_0)$

We get a dynamics on the space of initial conditions. The main idea is, using the *Riemann-Hilbert correspondence*, to replace this *transcendental dynamics* by a simple *algebraic dynamics*.

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Character varieties and P_{VI} : comparison of dynamics

The Okamoto space of initial conditions $\mathcal{M}(\theta)$ can be interpreted as the moduli space of rank 2, trace free, meromorphic connections having simple poles at 0, *t*, 1, ∞ with prescribed residual eigenvalues

 $\pm \frac{\theta_1}{2}, \pm \frac{\theta_2}{2}, \pm \frac{\theta_3}{2}, \pm \frac{\theta_4}{2}.$

The Riemann-Hilbert correspondence provides an analytic diffeomorphism $\mathcal{M}(\theta) \rightarrow \hat{S}_{(A,B,C,D)}$, where $\hat{S}_{(A,B,C,D)}$ is the minimal desingularization of $S_{(A,B,C,D)}$. The Painlevé foliation corresponds to the Schlesinger foliation and the Schlesinger foliation corresponds to the natural isomonodromic connection on the bundle of character varieties $S_{(A,B,C,D)} \rightarrow P^1(\mathbf{C}) \setminus \{0, 1, \infty\}$. Therefore the monodromy of $P_{VI}(\theta)$ corresponds to the before described representation :

 $\pi_1(P^1(\mathbf{C})\setminus\{0,1,\infty\},\star) o \operatorname{\mathsf{Aut}}(S_{(A,B,C,D)}).$

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS OF MEROMORPHIC O.D.E.

Transformations

In order to study a differential system we can use two types of transformations:

- Transformations of the independant variable *z*, that is analytic automorphisms ϕ of *U*: $z := \phi(u)$. We replace the infinitesimal automorphism $\frac{d}{dz}$ by $\frac{d}{du} = \frac{dz}{du}\frac{d}{dz} = \phi'(u)\frac{d}{dz}$.
- Linear transformations of the unknown vector function Y.

In the two cases we can use only "known" transformations. In the first case we will use *Möbius transformations* (homographies), in the second we will use "rational" transformations Y = PZ, with $P \in GL_n(K)$, $K \subset \mathcal{M}(U)$ being a field of "known" functions, containing the entries of the matrix A of the given system, the "rationality field".

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We can work with various rationality fields, we need on *K* (or \hat{K}) a structure of *differential field*.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We can work with various rationality fields, we need on *K* (or \hat{K}) a structure of *differential field*.

Global cases:

$$K := \mathbf{C}(z), K := \mathcal{M}(\mathbf{C}), K := \mathcal{M}(U), U \subset P^{1}(\mathbf{C});$$

 $d/dz;$

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We can work with various rationality fields, we need on K (or \hat{K}) a structure of *differential field*.

• Global cases:

$$egin{aligned} &\mathcal{K}:=\mathbf{C}(z),\,\mathcal{K}:=\mathcal{M}(\mathbf{C}),\,\mathcal{K}:=\mathcal{M}(U),\,\,U\subset P^1(\mathbf{C});\ d/dz; \end{aligned}$$

• Local cases:

 $K := \mathbf{C}(\{z\})$ (the field of fractions of convergent power series $\mathbf{C}\{z\}$) $K := \mathbf{C}(\{(z - a)\});$

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We can work with various rationality fields, we need on *K* (or \hat{K}) a structure of *differential field*.

Global cases:

$$egin{aligned} &\mathcal{K}:=\mathbf{C}(z),\,\mathcal{K}:=\mathcal{M}(\mathbf{C}),\,\mathcal{K}:=\mathcal{M}(U),\,\,U\subset P^1(\mathbf{C});\ d/dz; \end{aligned}$$

Local cases:

 $K := \mathbf{C}(\{z\})$ (the field of fractions of convergent power series $\mathbf{C}\{z\}$) $K := \mathbf{C}(\{(z - a)\})$;

• Formal cases:

 $\hat{\mathcal{K}} := \mathbf{C}((z))$ (the field of fractions of $\mathbf{C}[[z]]$); $\hat{\mathcal{K}} := \mathbf{C}((1/z))$ (the field of fractions of $\mathbf{C}[[1/z]]$)...

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

According to the cases we need on K (or \hat{K}) a structure of *differential field*.

More generally we introduce the notions of *differential ring*.

A commutative ring (with an unity 1) with an operator $(R, \partial), \partial: R \to R$ (resp. $(R, \psi), \psi: R \to R$) is a differential (resp. difference) ring if:

- ∂ is additive: if $f, g \in R$, then $\partial(f+g) = \partial f + \partial g$;
- ∂ is a derivation: if f, g ∈ R, then ∂(fg) = (∂f)g + f∂g (resp. ∂ is a homomorphism: if f, g ∈ R, then ∂(fg) = (∂f)(∂g)).

Constants: $C_R := \{f \in R | \partial f = 0\}$. Here in all the cases the constants field is **C**.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Gauge transformations

We consider a differential field (K, ∂) and a differential system:

 $\partial Y = AY, \quad A \in M_n(K).$

If we introduce a linear transformation Y = PZ on the unknown vector Y: $P \in Gl_n(K)$, whose entries belong to the "rationality field" K, we get:

$$AY = \partial Y = \partial(PZ) = (\partial P)Z + P\partial Z$$
$$APZ = \partial Y = \partial(PZ) = (\partial P)Z + P\partial Z$$
$$\partial Z = (P^{-1}AP - P^{-1}\partial P)Z$$

or

 $\partial Z = BZ$, with $B := P^{-1}AP - P^{-1}\partial P$.

We can replace the gauge group $Gl_n(\mathbf{C})$ by a *linear* algebraic group $G: P \in G(K)$.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Following Birkhoff (1913) we consider some problems of *classification* of differential systems that is the study of the quotients of $GI_n(K)$ by the corresponding equivalence relations. More precisely the purpose of Birkhoff was to identify each equivalence class by a set of invariants (the *analysis*) such that conversely to a set of invariants corresponds an unique equivalence class (the *synthesis*).

There are two classes of invariants: *algebraic invariants* (computable by hand or using computer algebra) and *transcendental invariants*.

If the matrix *A* of the system is *constant* (i.e. if its entries belong to C_K) then we can choose the matrix *P* constant and we get:

 $B := P^{-1}AP - P^{-1}\partial P = P^{-1}AP$

and the corresponding equivalence class is the *similitude class* of the matrix *A*.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Riemann-Hilbert Problems

The *direct problem* of the classification is to get a *complete set of invariants*, characterizing the class. The *inverse problem* is to start from a set of "invariants" and to build an equation (up to equivalence).

The main tool of Birkhoff for the solution of the inverse problem is a theorem of factorization of matrix functions (Birkhoff factorization theorem 1911). The problem was initially stated by Riemann (posthumous note, 1876), anterior results are due to Hilbert (1905) and Plemelj (1906, 1908). Birkhoff result was later improved by Garnier (1951).

A weaker version is equivalent to a theorem of classification of fibre bundles on the Riemann sphere (Grothendieck 1957).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Fundamental solutions

Let Y' = AY be a meromorphic differential system on $P^1(\mathbf{C})$ (or more generally on a Riemann surface X). Let S be its singular set (a finite subset of $P^1(\mathbf{C})$). Let \star be a *regular* point, due to Cauchy theorem there exists a *holomorphic fundamental solution* F in a neighborhood of \star (we can choose $F(\star) = I$), extending it by analytic continuation, we get an holomorphic matrix F on the universal covering of $(P^1(\mathbf{C}) - S; \star)$ (or $(X - S; \star)$) which is a solution (in the evident sense).

If F_1 is another fundamental solution, then $F_1 = FC$, where $C \in Gl_n(\mathbf{C})$ is a constant matrix and conversely.

Let *G* be a *connected* linear algebraic group and let \mathfrak{g} be its Lie algebra. We suppose $A \in \mathfrak{g}(K)$, if $F(z_0) = I$, then *F* takes its values in *G*. If F_1 is another fundamental solution taking its values in *G*, then $F_1 = FC$, where $C \in G(\mathbf{C})$.

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト 三 臣

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

An example: the hypergeometric differential equations

The first solution of the classification problem is due to B. Riemann in the case of the *hypergeometric* differential equations:

$$(\boldsymbol{E}_{\alpha,\beta,\gamma}) \quad \boldsymbol{z}(1-\boldsymbol{z})\boldsymbol{y}'' + [\gamma - (\alpha + \beta + 1)\boldsymbol{z}]\boldsymbol{y}' - \alpha\beta = \boldsymbol{0},$$

 $\alpha, \ \beta, \ \gamma \in \ \mathbf{C}.$ Hypergeometric series:

$$_{2}F_{1}(\alpha,\beta;\gamma;z) := \sum_{n=0}^{+\infty} \frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}n!}, \ (a)_{n} = \alpha(\alpha-1)\cdots(\alpha-n+1).$$

Fundamental system of solutions at the origin:

$$_{2}F_{1}(\alpha,\beta;\gamma;z), \quad z^{1-\gamma}{}_{2}F_{1}(\alpha-\gamma+1,\beta-\gamma+1;2-\gamma;z).$$

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Fundamental system of solutions at the origin (generic case):

$$_{2}F_{1}(\alpha,\beta;\gamma;z), \quad z^{1-\gamma}{}_{2}F_{1}(\alpha-\gamma+1,\beta-\gamma+1;2-\gamma;z).$$

Monodromy around the origin: $z \rightarrow e^{2i\pi}z$ (analytic continuation along a simple loop around 0):

$$M_0 := \begin{pmatrix} 1 & 0 \\ 0 & e^{-2i\pi\gamma} \end{pmatrix}.$$

Monodromy exponents:

– at 0:
$$0, 1 - \gamma$$

We can put the hypergeometric equation in system form, then starting from a fundamental solution *F* in a small neighborhood of the point \star : z = 1/2, we get, by analytic continuation along a loop ℓ at 1/2 a *linear permutation* of the solutions (monodromy transformation): $\mathcal{M}_{\ell} \in Gl(Sol_{1/2})$, and, using *F*, a monodromy matrix M_{ℓ} :

$F \mapsto FM_{\ell}$

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日 ・ つ へ ()・

Fundamental system of solutions at the origin (generic case):

$$_{2}F_{1}(\alpha,\beta;\gamma;z), \quad z^{1-\gamma}{}_{2}F_{1}(\alpha-\gamma+1,\beta-\gamma+1;2-\gamma;z).$$

Monodromy around the origin: $z \rightarrow e^{2i\pi}z$ (analytic continuation along a simple loop around 0):

$$M_0:=\begin{pmatrix}1&0\\0&e^{-2i\pi\gamma}\end{pmatrix}.$$

Monodromy exponents:

- at 1:
$$\alpha, \beta$$

We can put the hypergeometric equation in system form, then starting from a fundamental solution *F* in a small neighborhood of the point \star : *z* = 1/2, we get, by analytic continuation along a loop ℓ at 1/2 a *linear permutation* of the solutions (monodromy transformation): $\mathcal{M}_{\ell} \in Gl(Sol_{1/2})$, and, using *F*, a monodromy matrix \mathcal{M}_{ℓ} :

$F \mapsto FM_{\ell}$

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日 ・ つ へ ()・

Fundamental system of solutions at the origin (generic case):

$$_{2}F_{1}(\alpha,\beta;\gamma;z), \quad z^{1-\gamma}{}_{2}F_{1}(\alpha-\gamma+1,\beta-\gamma+1;2-\gamma;z).$$

Monodromy around the origin: $z \rightarrow e^{2i\pi}z$ (analytic continuation along a simple loop around 0):

$$M_0 := \begin{pmatrix} 1 & 0 \\ 0 & e^{-2i\pi\gamma} \end{pmatrix}.$$

Monodromy exponents:

– at 0:
$$0, 1 - \gamma$$

- at 1:
$$\alpha, \beta$$

- at
$$\infty$$
: 0, $\gamma - \alpha - \beta$.

We can put the hypergeometric equation in system form, then starting from a fundamental solution *F* in a small neighborhood of the point \star : z = 1/2, we get, by analytic continuation along a loop ℓ at 1/2 a *linear permutation* of the solutions (monodromy transformation): $\mathcal{M}_{\ell} \in Gl(Sol_{1/2})$, and, using *F*, a monodromy matrix M_{ℓ} :

 $F \mapsto FM_{\ell}$

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The map $\ell \mapsto \mathcal{M}_{\ell}$ induces a map (the monodromy representation):

$$\pi_1(P^1(\mathbf{C}) - \{0, 1, \infty\}; 1/2) \to Gl(Sol_{1/2})$$

and, using F (equivalently a basis of $Sol_{1/2}$) a map:

$$\pi_1(P^1(\mathbf{C}) - \{0, 1, \infty\}; 1/2) \to Gl_2(\mathbf{C}),$$

defined up to conjugation.

Using a "good choice" for *F*, B. Riemann computed this representation for the hypergeometric differential equations using only *trigonometric functions*. More generally we can compute it from "natural choices" for *F* using trigonometric functions and Γ function. The *monodromy* is (generically) a *transcendental function* of α , β , γ .

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

If $F = PF_1$, with $P \in Gl_2(\mathbf{C}(z))$ (gauge transformation), then *P* is *invariant by the monodromy*. As $FM_{\ell} = PF_1M_{\ell}$, F_1 is transformed by the monodromy into F_1M_{ℓ} , therefore the monodromy is *invariant by equivalence* (local monodromy or global monodromy).

This remains true in the general case: Y' = AY with $A \in Gl_n(\mathbf{C}(z))$. If $S \subset P^1(\mathbf{C})$ is the set of poles of A, then we have a monodromy representation:

 $\pi_1(P^1(\mathbf{C}) - S; z_0) \rightarrow Gl(Sol_{z_0}),$

 z_0 being a regular point ($z_0 \in P^1(\mathbf{C}) - S$), and using a fundamental solution F at z_0 (Cauchy existence theorem) we get a map:

 $\pi_1(P^1(\mathbf{C}-S;z_0)) \rightarrow Gl_n(\mathbf{C})$

This monodromy representation is invariant by equivalence.

There is also a local version and a formal version (using the formal monodromy).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

In the global, local, formal cases, the monodromy representation gives some invariants. It is natural to ask the following questions:

- Is it possible to deduce "all the invariants" from the knowledge of the monodromy (is the monodromy a "complete set of invariants") ?
- Is it possible from the knowledge of a finite dimensional representation of the fundamental group π₁ to get a differential system up to equivalence ?

For the hypergeometric differential equations and the complex linear two-dimensional representations of the free group Z * Z the answers are yes. It is due to Riemann.

In the general case it can be no. The simplest example is y' - y = 0 on $P^1(\mathbf{C})$: the monodromy is trivial, it is the same than the monodromy of zy' - y = 0 and the two equations are not equivalent.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

There is a nice class of linear differential systems such that the answers are yes, the *regular singular systems*. The condition is local at the singularities. A system Y' = AY is *Fuchsian* at z_1 if *A* admits a simple pole at z_1 , it is *regular singular* at z_1 if it is locally meromorphically equivalent to a Fuchsian system at z_1 . If $z_1 = 0$, if $\frac{A_0}{z}$ is the polar part of *A* at 0 and if $A_0 \in M_n(\mathbf{C})$ is non resonant (i.e. the difference of the eigenvalues are never positive integers), then the system Y' = AY is *locally* equivalent to the system:

$$zY'=A_0Y.$$

For differential equations there is no difference between Fuchsian and regular singular, the condition (at z_1) is: it is possible to write the equation:

$$y^{(n)} + b_{n-1}y^{(n-1)} + \dots + b_0y = 0$$

with b_0, \dots, b_{n-1} holomorphic at z_1 .

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

In the non regular singular case there are other invariants than the monodromy. A non regular singular singularity is said *irregular*. The question is essentially local at the irregular singularities and it is related to the *divergence of the fundamental solutions*.

If 0 is an *irregular singularity* of the system Y' = AY, then this system admits a *formal* fundamental solution (Hukuhara-Turrittin), *x* local coordinate:

$$\hat{F} = \hat{H}(t) x^L e^{Q(1/t)},$$

with $x = t^{\nu}, \nu \in \mathbf{N}^*$, $\hat{H} \in Gl_n(\mathbf{C}((t)), L \in M_n(\mathbf{C}), Q = \text{Diag}(q_1, \ldots, q_n), q_1, \ldots, q_n \in \frac{1}{t}\mathbf{C}[\frac{1}{t}].$

"In general" \hat{H} is *divergent*.

For simplicity we will describe only the *unramified case*: $\nu := 1$.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

The archetypal example is the Euler equation:

$$x^2y'+y=x$$

or its "homogeneous version": $(x^{-1}(x^2y' + y))' = 0$.

Euler equation admits a *divergent* formal power series solution:

$$\sum_{n=0}^{+\infty} (-1)^n n! x^{n+1}$$

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We return to a formal fundamental solution:

$$\hat{F} = \hat{H}(x)x^L e^{Q(1/x)}$$

Formal monodromy $\hat{M} := e^{2i\pi L}$ ($\nu = 1$), we have

 $\hat{F}(e^{2i\pi}x)=\hat{F}(x)\hat{M}.$

The *formal invariants* (in particular the formal monodromy) are obtained from *L*, *Q* (and ν).

The *meromorphic invariants* for a fixed normal formal form stems from the *divergence* of \hat{H} (*Stokes phenomena*). Intuitively they correspond to a "branching" of the "sum" of \hat{H} , a (purely unipotent) "monodromy" around "infinitely near singularities" defined by Q.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Summability and Stokes phenomena

"Generically" the entries of the matrix \hat{H} are *k*-summable (Ramis), where *k* is the Katz rank of the system (Δ) (the biggest slope of the Newton polygon of (Δ)). More generally they are *multisummable* (Martinet-Ramis...).

Therefore, for all $d \in S^1$, it is possible to define two summation operators S_d^+ and S_d^- associating to \hat{H} two matrices H_d^+ and H_d^- which are holomorphic on a "small" sector bisected by d.

In general $H_d^+ = H_d^-$, they differ only for a finite number of directions: the *singular directions* (or Stokes-lines, or anti-Stokes lines ...). Choosing a branch of the Logarithm, that is $\mathbf{d} \in \mathbf{R}$ above $d \in S^1$, we get two actual fundamental solutions $F_d^+ := \mathbf{S}_d^+ \hat{F}$ and $F_d^- := \mathbf{S}_d^- \hat{F}$. There exists a unique *constant* matrix St_d such that:

$$F_{d}^{+} = F_{d}^{-} St_{d}$$

 $St_d \neq I$ if and only if *d* is a singular direction.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

There exists a unique *constant* matrix *St*_d such that:

$$F_{\mathbf{d}}^{+} = F_{\mathbf{d}}^{-} St_{\mathbf{d}},$$

 $St_d \neq I$ if and only if *d* is a singular direction. In that case St_d is the *Stokes matrix* associated to **d**. It is *unipotent*. There is a relation between the *formal monodromy* \hat{M} , the Stokes matrices and the *actual monodromy* \hat{M} :

$$M = \hat{M} St_{\mathbf{d}_{\mathbf{m}}} \cdots St_{\mathbf{d}_{\mathbf{m}}}$$

 $(\mathbf{d_1} < \cdots < \mathbf{d_m} < \mathbf{d_1} + 2\pi).$

For the Stokes matrices, a change into the choice of a branch of the logarithm corresponds to a conjugation by a power of \hat{M} .

Intuitively a Stokes matrix corresponds to a loop around a singularity (or a pack of singularities) "infinitely near" of 0 on d.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Generalized Riemann-Hilbert correspondance, local version

To a germ of irregular meromorphic system, in the unramified case, we can associate:

 $Q \in \frac{1}{z} [\frac{1}{z}], \quad \hat{M}, \text{ and the } St_d.$

We will say that these data defines a *representation* of the *wild local fundamental group* $\pi_{1,w}(\mathbf{C}, \mathbf{0})$. (It is possible to give precise definitions at the price of some abstraction...)

Conversely to such data (satisfying some compatibility conditions), it is possible to associate a germ of meromorphic system. It is the *generalized (or wild) Riemann-Hilbert correspondance* (Birkhoff, Balser-Jurkat-Lutz, Sibuya, Malgrange...) in the local case.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Generalized Riemann-Hilbert correspondance, global version

Let X be a Riemann surface. In the *regular singular-case* we associate to a meromorphic differential system (Δ) on X its *monodromy representation*:

 $\begin{array}{l} \rho: \pi_1(X \setminus S; \star) \to Gl(\mathsf{Sol}_\star(\Delta) \\ RH: \quad (\Delta) \to \rho. \end{array}$

In the *irregular case* we can imitate this process, replacing the fundamental group by a *wild fundamental group* (Martinet-Ramis, Bolibruch-Malek-Mitschi), however the correspondance it not "perfect", it is in fact necessary to use a *wild fundamental groupoid*. What are missing are some "links" between the base point * and each irregular singular point a_i , more precisely a continuous path between \star and a (generic) direction \tilde{a}_i at a_i , followed by an "antisummation path" along \tilde{a}_i (Jimbo-Miwa-Ueno, Boalch, Witten, van der Put-Saito).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

EDWARD WITTEN

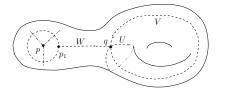


FIGURE 2. A Riemann surface C, here taken to be of genus $g_C = 1$, with an irregular singularity at a point p. A basepoint is taken at q. Show are the Stokes rays near p and the important paths in defining the generalized monodromy data.

<ロト <回ト < 回ト < 回ト :

큰

Figure: Wild fundamental groupoid: g=1, m=1

Representations of the wild fundamental groupoid, global version (The idea)

Links: $L_i : Sol_{\star} \rightarrow Sol_{a_i}, i = 1, \dots m.$

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Representations of the wild fundamental groupoid, global version (The idea)

Links:
$$L_i : Sol_* \rightarrow Sol_{a_i}, i = 1, \dots m.$$

• $X := P^1(\mathbf{C})$, genus g := 0:

$$I = L_m^{-1} M_m L_m \dots L_1^{-1} M_1 L_1,$$

$$M_i = \hat{M}_i \operatorname{St}_{\mathbf{d}_{i,r_i}} \dots \operatorname{St}_{\mathbf{d}_{i,r_1}} \quad i = 1, \dots m.$$

イロト イヨト イヨト イヨト

-2

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Representations of the wild fundamental groupoid, global version (The idea)

Links:
$$L_i : Sol_* \rightarrow Sol_{a_i}, i = 1, \dots m$$

•
$$X := P^1(\mathbf{C})$$
, genus $g := 0$:

$$I = L_m^{-1} M_m L_m \dots L_1^{-1} M_1 L_1,$$

$$M_i = \hat{M}_i \operatorname{St}_{\mathbf{d}_{i,\mathbf{r}_1}} \dots \operatorname{St}_{\mathbf{d}_{i,\mathbf{r}_1}} \quad i = 1, \dots m.$$

• $X := X_g$, genus g:

$$I = U_1 V_1 U_1^{-1} V_1^{-1} \dots U_g V_g U_g^{-1} V_g^{-1} L_m^{-1} M_m L_m \dots L_1^{-1} M_1 L_1,$$

$$M_i = \hat{M}_i \operatorname{St}_{\mathbf{d}_{i,\mathbf{r}_i}} \dots \operatorname{St}_{\mathbf{d}_{i,\mathbf{r}_i}}, \quad i = 1, \dots m.$$

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Gauge group

Let G be a *connected* linear algebraic group and let \mathfrak{g} be its Lie algebra.

Let (Δ) : $\frac{dY}{dz} = A(z)Y$, we suppose $A \in \mathfrak{g}(K)$, where $K := \mathbf{C}(\{z\})$ (*A* is a meromorphic matrix taking its values in the vector space \mathfrak{g}), then:

 $Q \in \frac{1}{z}\mathfrak{g}[\frac{1}{z}], \quad \hat{M} \in G, \quad \text{and the} \quad \operatorname{St}_{\mathsf{d}} \in G$

(Kolchin, Babbitt-Varadarajan, Martinet-Ramis, Boalch). We say that *G* is a *gauge group* for the system (Δ).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

BRAID GROUPS AND MAPPING CLASS GROUPS

イロト イヨト イヨト イヨト

æ.,

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Figure: Braid

INVARIANTS I...

J.P. Ramis

Presentatior Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

E. Brieskorn (1988):

The beauty of braids is that they make ties between so many different parts of mathematics: combinatorial theory, number theory, group theory, algebra, topology, geometry and analysis, and, last but not least, singularities.

Figure: E. Brieskorn

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Description using braiding of strands The group law

$\begin{array}{c} 4 \\ 3 \\ 2 \\ 1 \\ \end{array}$

Figure 1: Examples of 4-braids X, Y and their product XY

Figure: Braids

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Braid groups, following E. Artin (1925)

The Artin braid group on *n* strands B_n is the group generated by n - 1 elements $\sigma_1, \ldots, \sigma_{n-1}$ satisfying the relations:

Figure: Emil Artin 1898-1962

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Braid groups, following E. Artin (1925)

The Artin braid group on *n* strands B_n is the group generated by n - 1 elements $\sigma_1, \ldots, \sigma_{n-1}$ satisfying the relations:

•
$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
, if $|j - i| \ge 2$;

Figure: Emil Artin 1898-1962

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Braid groups, following E. Artin (1925)

The Artin braid group on *n* strands B_n is the group generated by n - 1 elements $\sigma_1, \ldots, \sigma_{n-1}$ satisfying the relations:

•
$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
, if $|j - i| \ge 2$;
• $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$, $i = 1, ..., n-2$, if $n \ge 1$

Figure: Emil Artin 1898-1962

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

3.

Generators of braid groups: geometric interpretation with strands

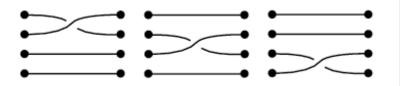


Figure: Generators $\sigma_1, \sigma_2, \sigma_3$ of B_4

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

The braid group B_1 is trivial and the braid group B_2 is isomorphic to **Z**.

For n = 3, the Artin braid group B_3 is generated by σ_1 and σ_2 with only one relation $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$.

The *center* of B_3 is the subgroup generated by

$$(\sigma_1\sigma_2)^3 = (\sigma_1\sigma_2\sigma_1)^2.$$

Let
$$S_1 := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $S_2 := \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$, $\sigma_1 \mapsto S_1$, $\sigma_2 \mapsto S_2$
induces a group homomorphism:

$$B_3 \rightarrow PSL_2(\mathbf{Z})$$

There is an exact sequence:

$$I \rightarrow ((\sigma_1 \sigma_2)^3) \rightarrow B_3 \rightarrow PSL_2(\mathbf{Z}) \rightarrow 1$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

- 문

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Permutation groups and pure braid groups

Let \mathfrak{S}_n be the permutation group of *n* elements.

Taking account only of the *origin* and the *extremity* of the strands, we get a group homomorphism: $B_n \mapsto \mathfrak{S}_n$. This homomorphism is onto and, by definition, its kernel is the:

pure braid group P_n .

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Braid groups and configuration spaces

The *configuration space* of *n* points on the complex plane **C** is, by definition,

$$\operatorname{Conf}_n := \{ z := (z_1, \ldots, z_n) \in \mathbf{C}^n \, | \, z_i \neq z_i, \text{ if } i \neq j \}.$$

The permutation group \mathfrak{S}_n acts on Conf_n by permutation of the coordinates of *z*.

There is an interpretation of the groups B_n and P_n as *fundamental groups*:

$$P_n = \pi_1(\operatorname{Conf}_n, \star), \quad B_n = \pi_1(\operatorname{Conf}_n/\mathfrak{S}_n, \star).$$

Let $\gamma := (\gamma_1, \ldots, \gamma_n) : [0, 1] \to \text{Conf}_n$ be a continuous loop. The graphs of $\gamma_1, \ldots, \gamma_n$ form a subset of $[0, 1] \times \mathbb{C}^n$ which can be interpreted as a *geometric (pure) braid*.

Variants. We can replace the complex plane **C** by the disk *D*. We can also interpret B_n as a *mapping class group*.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

▲□▶▲□▶▲□▶▲□▶ = つへで

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

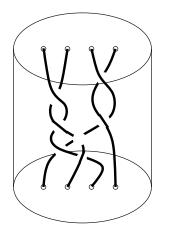


Figure: Braids and punctured disks

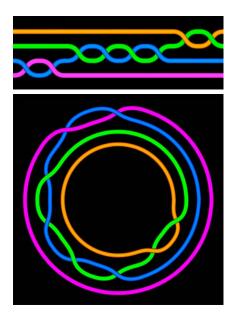


Figure: Pure braid and loop on the configuration space

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト → 臣 → の ۹

Braid groups and mapping class groups

Let \overline{D}_n be the closed unit disc with *n* marked points a_1, \ldots, a_n . The braid group B_n is isomorphic to the group $\mathfrak{M}(\overline{D}_n)$ of *diffeotopies* of \overline{D}_n that is the subgroup of the group of diffeotopies of the closed disc leaving fixed the boundary $\partial \overline{D} = S^1$ and the *set* of marked points.

Idea of a proof

Let $f \in \mathfrak{M}(\overline{D}_n)$, we represent it as a diffeomorphism ϕ preserving the orientation. Interpreting ϕ as a diffeomorphism of \overline{D} , we know that it is isotopic to id_{D_n} . If $t \in [0, 1] \mapsto \phi_t$ is an isotopy, the *n* maps $(t, a_i) \mapsto (t, \phi_t(a_1)) \in [0, 1] \times \overline{D}$ $(i = 1, \ldots, n)$ define a geometric braid and we get a map $\mathfrak{M}(\overline{D}_n) \to B_n$. It is clearly an homomorphism of group, exhibiting the inverse one can prove that it is an isomorphism.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ・ 亘 ・ の Q ()

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ・ 亘 ・ の Q ()

The group $\mathfrak{M}(\overline{D}_n)$ induces an *automorphism* of the fundamental group $\pi_1(\overline{D}_n)$. It acts on the "natural" systems of generators of $\pi_1(\overline{D}_n)$ (such a system identifies the fundamental group with a free group $F_n := \mathbf{Z} * \cdots * \mathbf{Z}$).

We are interested in the subgroup of $\mathfrak{M}(\overline{D}_n)$ fixing *each* a_i , i = 1, ..., n. It is isomorphic to the *pure* braid group P_n and also to the mapping class group of the n + 1 punctured sphere S_{n+1}^2 .

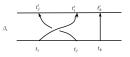


Figure 10: Basic braid β_i , where (i, j, k) is a cyclic of (1, 2, 3)

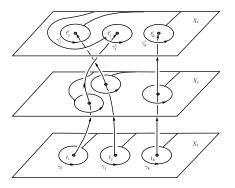


Figure 11: The braid action β_i : $(\gamma_i, \gamma_j, \gamma_k) \mapsto (\gamma'_i, \gamma'_j, \gamma'_k)$

Figure: Half-monodromy and braiding (Iwasaki...)

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 ●の○

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

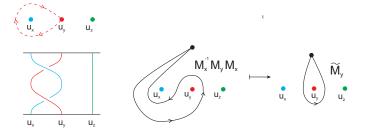


Figure: Monodromy and braiding (O. Lisovyy)

イロト イヨト イヨト イヨト

큰

The pure braid group P_3 and the dynamics of the Painlevé equation P_{VI}

Using the Riemann-Hilbert map, it is possible to interpret the (analytic) dynamics of P_{VI} as a dynamics on the character variety $\chi(S_4^2, Sl_2(\mathbf{C}))$ corresponding to the action of the mapping class group of S_4^2 , or equivalently to the pure braid group P_3 . Hence we get a *polynomial* action of $PSL_2(\mathbf{Z})$ on the cubic surfaces $S_{(A,B,C,D)}$.

Let $\Gamma_2^{\pm} \subset PSL_2(\mathbf{Z})$ be the subgroup whose elements coincide with identity modulo 2. Then (El'-Huti):

the morphism $\Gamma_2^{\pm} \rightarrow \text{Aut}(S_{(A,B,C,D)})$ is injective, the index of its image is bounded by 24 and it is generically an *isomorphism*.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ・ 亘 ・ の Q ()

Let $\Gamma_2^{\pm} \subset PSL_2(\mathbf{Z})$ be the subgroup whose elements coincide with identity modulo 2. Then (El'-Huti): the morphism $\Gamma_2^{\pm} \rightarrow Aut(S_{(A,B,C,D)})$ is injective, the index of its image is bounded by 24 and it is generically an *isomorphism*.

Using this result it is possible to prove that the *non-commutative Galois differential groupoid*, of P_{VI} , in Malgrange sense, is

the groupoid of transformations conserving the area, except in the Picard-Painlevé case (Cantat-Loray).

The irreducibility of P_{VI} in Nishioka-Umemura sense follows (Casale).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ・ 亘 ・ の Q ()

Let, as above,
$$S_4^2 = P^1(\mathbf{C}) \setminus \{a_1, a_2, a_3, a_4\}$$
 and $G := Sl_2(\mathbf{C})$.
Let $\rho : \pi_1(S_4^2) \rightarrow Sl_2(\mathbf{C})$ be a representation.
We set:

$$M_1 := \rho(\gamma_1), M_2 := \rho(\gamma_2), M_3 = \rho(\gamma_3).$$

We consider

$$\Lambda := \{ (s_x, s_y, s_z) | s_x^2 = s_y^2 = s_z^2 = 1 \} = \mathbf{Z}_2 * \mathbf{Z}_2 * \mathbf{Z}_2.$$
$$s_x = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}, s_y = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, s_z = \begin{pmatrix} 1 & 0 \\ -2 & -1 \end{pmatrix}$$

The group Γ_2^{\pm} can be identified with Λ and the standard modular group Γ_2 corresponds the subgroup (of index 2) of Λ containing the words of even length in the *involutions* s_x , s_y , s_z .

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

$$\begin{split} s_x &: (M_1, M_2, M_3) \to (M_1^{-1}, M_2^{-1}, M_1 M_3^{-1} M_1^{-1}) \\ s_y &: (M_1, M_2, M_3) \to (M_2 M_1^{-1} M_2^{-1}, M_2^{-1}, M_3^{-1}) \\ s_z &: (M_1, M_2, M_3) \to (M_1^{-1}, M_3 M_2^{-1} M_3^{-1}, M_3^{-1}) \end{split}$$

The traces a, b, c, d (and therefore A, B, C, D) are fixed by $\Lambda = \Gamma_2^{\pm}$.

The action of $\Lambda = \Gamma_2^{\pm}$ on the cubic surface $S_{(A,B,C,D)}$ is (Loray-Cantat, Lisovyy):

 $s_x(x, y, z) = (A - x - yz, y, z)$ $s_y(x, y, z) = (x, B - y - zx, z)$ $s_z(x, y, z) = (x, y, -z - xy)$

The standard modular group $\Gamma_2 \subset PSL_2(\mathbf{Z})$ is generated by the three elements:

$$g_{x} = s_{z}s_{y} = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} = S_{1}^{2}$$
$$g_{y} = s_{x}s_{z} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = S_{2}^{2}$$
$$g_{z} = s_{y}s_{x} = \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix} = S_{1}^{-2}S_{2}^{-2}$$

This corresponds, modulo the Riemann-Hilbert map, to the *Painlevé VI non-linear monodromy* (*t* turning around, 0, 1, ∞). We have $g_x g_y g_z = 1$.

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ・ 亘 ・ の Q ()

From P_{VI} to the other Painlevé equations

Our aim is to find a similar mechanism for the other Painlevé equations.

It is necessary (and, we hope, sufficient...) to replace, mutatis mutandis,

tame objects (regular singularities)

by

wild objects (irregular singularities).

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

-2

INVARIANTS I...

J.P. Ramis

Presentatior Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

REDUCTIVE GROUPS

and

GENERALIZED BRAID GROUPS

イロト イヨト イヨト イヨト

-20

Motivation: Infinitely near points and how to use them

As we have said it is possible to interpret an *irregular singular point* as a *"pack of infinitely near singularities"* in some "transcendental sense" (Garnier 1919, and later Ramis, Deligne, Martinet-Ramis...).

It is possible to give rigourous definitions, using in particular *roots* on sub-tori of algebraic groups (Martinet-Ramis)¹ then one can generalize the notion of *configuration space* for such packs of infinitely near singularities and the corresponding fundamental groups are:

generalized braid groups,

more precisely *G*-braid groups, *G* being a *reductive algebraic group* (cf. E. Brieskorn).

INVARIANTS I ...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

¹An algebraic version of Ecalle pointed alien derivations,

Let *G* be a complex linear algebraic group, by definition it is *reductive* if it does not contain an invariant algebraic subgroup isomorphic to G_a (i. e. to the additive group $(\mathbf{C}, +)$). It is equivalent to say that the *unipotent radical* $R_u(G)$ of *G* is *trivial*, or that the *radical* R(G) of *G* is an algebraic *torus*.

The following conditions are equivalent:

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *G* be a complex linear algebraic group, by definition it is *reductive* if it does not contain an invariant algebraic subgroup isomorphic to G_a (i. e. to the additive group $(\mathbf{C}, +)$). It is equivalent to say that the *unipotent radical* $R_u(G)$ of *G* is *trivial*, or that the *radical* R(G) of *G* is an algebraic *torus*.

The following conditions are equivalent:

• G is reductive;

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *G* be a complex linear algebraic group, by definition it is *reductive* if it does not contain an invariant algebraic subgroup isomorphic to G_a (i. e. to the additive group $(\mathbf{C}, +)$). It is equivalent to say that the *unipotent radical* $R_u(G)$ of *G* is *trivial*, or that the *radical* R(G) of *G* is an algebraic *torus*.

The following conditions are equivalent:

- G is reductive;
- G contains a compact group (in the sense of the usual topology) which is Zariski dense;

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *G* be a complex linear algebraic group, by definition it is *reductive* if it does not contain an invariant algebraic subgroup isomorphic to G_a (i. e. to the additive group $(\mathbf{C}, +)$). It is equivalent to say that the *unipotent radical* $R_u(G)$ of *G* is *trivial*, or that the *radical* R(G) of *G* is an algebraic *torus*.

The following conditions are equivalent:

- G is reductive;
- G contains a compact group (in the sense of the usual topology) which is Zariski dense;
- every rational representation of G (morphism of algebraic groups $G \rightarrow GL(V)$) is semi-simple.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *G* be a connected complex reductive group, We fix a maximal torus $T \subset G$ (Cartan sub-group), we denote the corresponding Lie algebras $\mathfrak{t} \subset \mathfrak{g}$. Let $\mathcal{R} \subset \mathfrak{t}^*$ be the set of roots of *G* relative to *T* (non zero weights). To $\alpha \in \mathcal{R}$, we associate the root space $\mathfrak{g}_{\alpha} \subset \mathfrak{g}$:

 $\mathfrak{g}_{\alpha} := \{x \in \mathfrak{g} \mid [h, x] = \alpha(h)x, \forall h \in \mathfrak{t}\}.$ Then $\dim_{\mathbf{C}} \mathfrak{g}_{\alpha} = 1$. We have $\mathfrak{g} = \mathfrak{t} \oplus \bigoplus_{\alpha \in \mathcal{R}} \mathfrak{g}_{\alpha}.$ Let N(T) : be the normalizer of T: $N(T) := \{g \in G \mid gT = Tg\}$, then W := N(T)/T is the *Weyl group* of *G*. It can be interpreted as a finite group of complex reflections on the complex space \mathfrak{t} . To each root α is associated a reflection hyperplane Δ_{α} .

If $G := Sl_n(\mathbf{C})$, then we can choose for *T* the group of invertible diagonal matrices. Then $\mathfrak{t} \approx \mathbf{C}^n$, the roots are $x \mapsto x_i - x_j$, the roots hyperplanes are $\Delta_{ij} := \{x_i = x_j\}$ and the Weyl group is the permutation group \mathfrak{S}_n .

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Regular elements of a Cartan sub-algebra, generalized pure braid groups

Let *G* be a *connected complex reductive group*, We fix a maximal torus $T \subset G$ (Cartan sub-group), we denote the corresponding Lie algebras $\mathfrak{t} \subset \mathfrak{g}$. Let $\mathcal{R} \subset \mathfrak{t}^*$ be the set of *roots* of *G* relatively to *T*.

By definition, the *regular subset* of the Cartan Lie-algebra t is:

$$\mathfrak{t}_{\mathsf{reg}} := \mathfrak{t} \setminus igcup_{lpha \in \mathcal{R}} \Delta_lpha$$

We have $A \in \mathfrak{t}_{reg}$ if and only if $\alpha(A) \neq 0$ for all $\alpha \in \mathcal{R}$. If $G := Sl_n(\mathbf{C})$, then $\mathfrak{t}_{reg} = \mathbf{C}^n \setminus \bigcup_{i \neq j} \Delta_{ij}$ (configuration space).

By definition the *generalized pure braid group* associated to the complex algebraic Lie-algebra \mathfrak{g} is $\pi_1(\mathfrak{t}_{reg})$. If $G := Sl_n(\mathbf{C})$, then we get the *classical pure braid group*.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ・ 亘 ・ の Q ()

Reductive groups and deformations of O.D.E.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

In order to have a "good theory" of *iso-irregular deformations*, we will suppose in the following that the *local gauge groups* at the *irregular singularities* of our O.D.E. are connected *reductive groups*.

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

- 문

Reductive groups, positive roots, Borel subgroups

Let *G* a connected complex reductive group, $T \subset G$ a maximal torus and $\mathcal{R} \subset \mathfrak{t}^*$ the corresponding set of roots. We say that $\mathcal{R}^+ \subset \mathcal{R}$ is a subset of *positive roots* if:

- for all
$$\alpha \in \mathcal{R}$$
, $\alpha \in \mathcal{R}$ or $-\alpha \in \mathcal{R}$

- for all $\alpha, \beta \in \mathcal{R}^+$, $\alpha \neq \beta$, if $\alpha + \beta$ is a root, then $\alpha + \beta \in \mathcal{R}^+$.

If \mathcal{R}^+ is a subset of positive roots, then $\mathcal{R}^- := -\mathcal{R}^+$ is also a subset of positive roots.

The one-parameter subgroups $U_{\alpha} := \exp \mathfrak{g}_{\alpha}$, $\alpha \in \mathcal{R}^+$, generate a *unipotent* subgroup U^+ of *G*, the *unipotent* radical of a *Borel* subgroup B^+ of *G*. Replacing \mathcal{R}^+ by \mathcal{R}^- , we get U^- and the opposite Borel subgroup B^- . Using convenient coordinates, this corresponds to

triangular subgroups.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

WILD CHARACTER VARIETIES

BRAIDING OF STOKES DATA

and

ISO-IRREGULAR DEFORMATIONS

イロト イヨト イヨト イヨト

-2

Let *D* be a germ of complex disc and a local coordinate *z* vanishing at the center. We denote $\hat{K} := \mathbf{C}((z))$ and $\hat{O} := \mathbf{C}[[z]]$ (intrinsic differential algebras).

An (unramified) irregular point is the following data set:

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *D* be a germ of complex disc and a local coordinate *z* vanishing at the center. We denote $\hat{K} := \mathbf{C}((z))$ and $\hat{O} := \mathbf{C}[[z]]$ (intrinsic differential algebras).

An (unramified) irregular point is the following data set:

a connected complex reductive group G (with Lie algebra g),

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *D* be a germ of complex disc and a local coordinate *z* vanishing at the center. We denote $\hat{K} := \mathbf{C}((z))$ and $\hat{O} := \mathbf{C}[[z]]$ (intrinsic differential algebras).

An (unramified) irregular point is the following data set:

- a connected complex reductive group G (with Lie algebra g),
- a maximal torus $T \subset G$ (with Lie algebra $\mathfrak{t} \subset \mathfrak{g}$),

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *D* be a germ of complex disc and a local coordinate *z* vanishing at the center. We denote $\hat{K} := \mathbf{C}((z))$ and $\hat{O} := \mathbf{C}[[z]]$ (intrinsic differential algebras).

An (unramified) irregular point is the following data set:

- a connected complex reductive group G (with Lie algebra g),
- a maximal torus $T \subset G$ (with Lie algebra $\mathfrak{t} \subset \mathfrak{g}$),
- a positive integer $r \in \mathbf{N}$, r > 0 (Katz rank),

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *D* be a germ of complex disc and a local coordinate *z* vanishing at the center. We denote $\hat{K} := \mathbf{C}((z))$ and $\hat{O} := \mathbf{C}[[z]]$ (intrinsic differential algebras).

An (unramified) irregular point is the following data set:

- a *connected complex reductive group G* (with Lie algebra g),
- a maximal torus $T \subset G$ (with Lie algebra $\mathfrak{t} \subset \mathfrak{g}$),
- a positive integer $r \in \mathbf{N}$, r > 0 (Katz rank),
- an *irregular type*, that is:

$$Q:=\frac{A_r}{z^r}+\ldots+\frac{A_1}{z},$$

イロト イ理ト イヨト イヨト

where $A_j \in \mathfrak{t}$ (j = 1, ..., r). Intrinsically $Q \in \mathfrak{t}(\hat{K})/\mathfrak{t}(\hat{O})$. We denote by $H \subset G$ the *normalizer* of Q.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

If X is a Riemann surface, we will denote an irregular point "at $a \in X$ " by (a, Q) (omitting G and T). If Q = 0, (a, Q) = (a, 0) is, by definition, a regular singular point.

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

- 문

We consider a Riemann surface *X* with $m \ge 1$ marked points a_1, \ldots, a_m . For each $a_i, i = 1, \ldots, m$, we fix:

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We consider a Riemann surface X with $m \ge 1$ marked points a_1, \ldots, a_m . For each $a_i, i = 1, \ldots, m$, we fix:

a connected complex reductive group G_i

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We consider a Riemann surface X with $m \ge 1$ marked points a_1, \ldots, a_m . For each $a_i, i = 1, \ldots, m$, we fix:

- a connected complex reductive group G_i,
- a maximal torus $T_i \subset G_i$, with Lie algebra $\mathfrak{t}_i \subset \mathfrak{g}_i$,

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We consider a Riemann surface X with $m \ge 1$ marked points a_1, \ldots, a_m . For each $a_i, i = 1, \ldots, m$, we fix:

- a connected complex reductive group G_i
- a maximal torus $T_i \subset G_i$, with Lie algebra $\mathfrak{t}_i \subset \mathfrak{g}_i$,
- a positive integer $r_i \in \mathbf{Q}$, $r_i > 0$ (Katz rank),

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We consider a Riemann surface X with $m \ge 1$ marked points a_1, \ldots, a_m . For each $a_i, i = 1, \ldots, m$, we fix:

- a connected complex reductive group G_i,
- a maximal torus $T_i \subset G_i$, with Lie algebra $\mathfrak{t}_i \subset \mathfrak{g}_i$,
- a positive integer $r_i \in \mathbf{Q}$, $r_i > 0$ (Katz rank),

• an *irregular type* at a_i , that is:

$$\mathcal{Q}_i := \frac{\mathcal{A}_{i,r_i}}{z^{r_i}} + \ldots + \frac{\mathcal{A}_{i,1}}{z},$$

where z is a local coordinate vanishing at a_i and $A_{i,j} \in \mathfrak{t}_i$, $(j = 1, \dots, r_j)$.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We consider a Riemann surface X with $m \ge 1$ marked points a_1, \ldots, a_m . For each $a_i, i = 1, \ldots, m$, we fix:

- a connected complex reductive group G_i,
- a maximal torus $T_i \subset G_i$, with Lie algebra $\mathfrak{t}_i \subset \mathfrak{g}_i$,
- a positive integer $r_i \in \mathbf{Q}$, $r_i > 0$ (Katz rank),

• an *irregular type* at a_i , that is:

$$\mathcal{Q}_i := rac{A_{i,r_i}}{z^{r_i}} + \ldots + rac{A_{i,1}}{z},$$

where z is a local coordinate vanishing at a_i and $A_{i,j} \in \mathfrak{t}_i$, $(j = 1, ..., r_j)$.

These data define an *irregular curve* or *wild Riemann surface*. Equivalently such a curve is the data of a Riemann surface with *m* marked *irregular points* (a_i, Q_i) (i = 1, ..., m). We denote by $H_i \subset G_i$ the *normalizer* of Q_i .

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

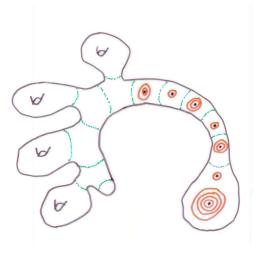


Figure: From Ph. Boalch

INVARIANTS I...

J.P. Ramis

Presentatior Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We will associate to an irregular curve a moduli of representations. In order to have a *good notion of deformation* (some kind of flatness) we will suppose that the coefficient A_{i,r_i} of the *most polar part* $\frac{A_{i,r_i}}{z^{r_i}}$ of Q_i is *regular*: $A_{i,r_i} \in (t_i)_{reg}$ (i = 1, ..., m).

Intuitively an irregular point is a pack of infinitely near points and the regularity hypothesis allows the deformation of this pack "without crossing". The homotopy class of a deformation loop of the pack corresponds to an element of a *generalized braid group*. This element will acts naturally on the classes of wild representations. According to E. Witten, we can interpret the positions of the a_i and the Q_i as the non topological data of a wild representation and, on the contrary, the Stokes matrices and the actual (or equivalently the formal) monodromy as the *generalized topological data*. In an iso-irregular deformation the non topological data move but the generalized topological data remain fixed.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We have several (pack of) *"times"*. One is controlling the deformations of the set of singularities (a_i) (modulo the action of the Möbius group), the others control the deformations of the most polar part $\frac{A_{i,r_i}}{z^{r_i}}$ of each Q_i .

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

- 문

Stokes data and monodromy associated to an irregular point

Following Martinet-Ramis, Ramis, Boalch. Cf. van der Put-Singer book

Let (a, Q) be an (unramified) irregular point. We choose a coordinate *z* vanishing at *a* and set a = 0. We will define the Stokes data associated to (0, Q).

For each root $\alpha \in \mathcal{R} \subset \mathfrak{t}^*$, we may define $q_\alpha := \alpha \circ Q$, using *z* we can interpret q_α as a *polynomial* without constant term $q_\alpha \in \frac{1}{z} \mathbb{C}[\frac{1}{z}]$ of degree deg $q_\alpha = r_\alpha$.

We interpret the real blow up of the origin as the circle S^1 , a direction $d \in S^1$ will be said to be a *singular direction* (or Stokes line) supported by α if the holomorphic function $e^{q_{\alpha}}$ has a *maximal decay* as $z \to 0$ in the direction d.

We denote by $\mathcal{R}(d) \subset \mathcal{R}$ the non empty finite subset of the roots supporting $d \in S^1$. It is a subset of some subset of *positive roots*.

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

- 문

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Stokes data and monodromy associated to an irregular point

We denote by $\mathcal{R}(d) \subset \mathcal{R}$ the non empty finite subset of the roots supporting $d \in S^1$. It is a subset of some subset of *positive roots*. By definition, the Stokes group associated to a singular direction $d \in S^1$ is the algebraic subgroup St_d of *G* generated by the one parameter subgroups exp \mathfrak{g}_{α} , $\alpha \in \mathcal{R}(d)$. The Stokes groups are *unipotent*. The Lie algebra st_d of St_d is:

$$igoplus_{lpha\in\mathcal{R}(d)}\mathfrak{g}_{lpha}\subset\mathfrak{g},$$

<ロト <回ト < 回ト < 回ト < 三ト - 三

it is *nilpotent*.

The Stokes groups St_d are *normalized* by *H*.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Stokes data and monodromy associated to an irregular point

Let (0, Q) be an irregular point, we denote by *H* the *normalizer* of *Q* in *G*. We can define:

- a formal monodromy $\hat{M} \in H$
- a set of Stokes multipliers S_d ∈ St_d, d ∈ S¹ being a singular direction; we call this set: Stokes data..

These data form "by definition" a *representation* ρ of the (local) *wild-fundamental group*:

 $\hat{M} = \rho(\hat{\mu}), \quad S_d = \rho(\sigma_d)$ Let $\Lambda \in \mathfrak{h}$ such that $\hat{M} = \exp 2i\pi\Lambda$. The preceding representation is associated to a meromorphic connection formally equivalent (modulo the gauge action of $G(\hat{K})$) to the connection $d - (dQ + \Lambda \frac{dz}{z})$. Starting from a base point on S^1 (a non singular direction) and indexing the singular directions counterclockwise, we get the actual monodromy M:

$M = \hat{M}S_{d_1} \dots S_{d_n}$

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Starting from a base point on S^1 (a non singular direction) and indexing the singular directions counterclockwise, we get the actual monodromy *M*:

 $M=\hat{M}S_{d_1}\ldots S_{d_n}.$

Therefore it is natural to define an element $\boldsymbol{\mu}$ of the wild fundamental group by

 $\mu = \hat{\mu} \sigma_{d_1} \dots \sigma_{d_n},$

and to identify it with a generator of $\pi_1(S^1)$. Then $\pi_1(S^1)$ is identified to a subgroup of the wild fundamental group $\pi_{1,w}(0, Q)$.

Be careful, there are subtle *constraints* on the generators $\hat{\mu}$, σ_d of $\pi_{1,w}(0, Q)$. It is possible to build "free generators" (in alien derivations style): Martinet-Ramis.

There are also *constraints* on the representations, they disappear in Martinet-Ramis construction.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Deformations leaving the Stokes data and monodromy "constant"

We want to move an irregular point with Stokes data and monodromy in such a way that Stokes data and monodromy remain "constant" in a reasonable sense.

We start from an irregular point (0, Q) and we "move it a little bit": (a, Q_a) , with $Q_a := \frac{A_r(a)}{(z-a)^r} + \ldots + \frac{A_1(a)}{z-a}$, such that $A_r(a) \in \mathfrak{t}_{reg}$ (we allow only deformations such that the order of the pole of Q_a dos not change).

We work with matrices: $G \subset GL_n(\mathbf{C})$, *T* diagonal. Starting from a system of Stokes data at (0, Q), we can associate to it a set of *effective singular directions*: the singular directions *d* such that $S_d \neq I$. When we move, it can happen that an effective direction *"splits"* in two or more effective directions (two different roots can support the same direction...).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ 圖 - 釣ゑ

Deformations leaving the Stokes and monodromy data "constant"

We work with matrices: $G \subset GL_n(\mathbf{C})$, *T* diagonal. Starting from a system of Stokes data at (0, Q), we can associate to it a set of *effective singular directions*: the singular directions *d* such that $S_d \neq I$. When we move, it can happen that an effective direction *"splits"* in two or more effective directions, therefore the good definition is *to keep the local products of Stokes matrices constant* (Ueno-Miwa-Jimbo, Boalch).

In terms of data associated to a family of germs at 0 of irregular connection, this corresponds to fix the action of $\mathbf{S}_{d''}^{-1} \circ \mathbf{S}_{d'}, d', d''$ being two *fixed* regular directions, d' < d < d'' "sufficiently near" d.

Supposing moreover that the *formal monodromy remains constant*, we define a local version of iso-irregular deformation.

<ロト <回ト < 回ト < 回ト :

- 문

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Wild character varieties: the local case

We start from an *irregular point* (0, Q). The group $H \subset G$ (normalizing Q) acts by adjoint action on the Stokes data and the monodromy (formal or actual), by definition the set of classes is the *wild character variety* associated to (0, Q), equivalently it is the set of equivalence classes of representations of the wild fundamental group associated to (0, Q).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Wild fundamental groupoid: the global case

We start from an *irregular curve* $(X, (a_1, Q_1), \dots, (a_m, Q_m))$. We suppose that all the G_i are equal: $G_i = G$ and, for simplicity, that G is an algebraic subgroup of $GL_n(\mathbf{C})$, T being *diagonal*.

We define an associated *wild fundamental groupoid*, "adding" some *irregular data* to the fundamental group $\pi_1(X \setminus \{a_1, \ldots, a_m\}, \star), \star \in X \setminus \{a_1, \ldots, a_m\}.$

As explained before, it is possible to define a wild fundamental *group* but in order to have a "good RH correspondence" it is necessary to define a *groupoid* (Jimbo-Miwa, Boalch, Witten, van der Put-Saito).

INVARIANTS I ...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

In *X* we replace each a_i by its *real blow* up ∂_i ($\partial_i \approx S^1$), we get a "partial compactification" \tilde{X} of $X \setminus \{a_1, \ldots, a_m\}$:

$$ilde{X} := X \setminus \{a_1, \ldots, a_m\} \cup \bigcup_{i=1, \ldots, m} \partial_i.$$

For each *i*, we choose $\tilde{a}_i \in \partial_i$ (a direction at a_i). We consider the space \tilde{X} with m + 1 (resp. *m*) base points: $\star \in X \setminus \{a_1, \ldots, a_m\}, \tilde{a}_1, \ldots, \tilde{a}_m$ (resp. $\tilde{a}_1, \ldots, \tilde{a}_m$). We will define "the" *wild fundamental groupoid*

 $\pi_{1,w}((X, (a_1, Q_1), \dots, (a_m, Q_m)); \star, \tilde{a}_1, \dots, \tilde{a}_m))$ (resp. $\pi_{1,w}((X, (a_1, Q_1), \dots, (a_m, Q_m)); \tilde{a}_1, \dots, \tilde{a}_m))$ of the irregular curve.

The idea is to "add" *irregular data* to the classical fundamental groupoid, with m + 1 base points:

 $\pi_1(\hat{X}; \star, \tilde{a}_1, \ldots, \tilde{a}_m)$ more precisely at each point \tilde{a}_i we "add" the wild fundamental group $\pi_{1,w}(a_i, Q_i)$:

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

,

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

,

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

The idea is to "add" *irregular data* to the classical fundamental group, with m + 1 base points:

 $\pi_1(\tilde{X};\star,\tilde{a}_1,\ldots,\tilde{a}_m)$

more precisely at each point \tilde{a}_i we "add" the wild fundamental group $\pi_{1,w}(a_i, Q_i)$:

we glue $\pi_{1,w}(a_i, Q_i)$ with $\pi_1(\tilde{X}; \star, \tilde{a}_1, \ldots, \tilde{a}_m)$ "in van Kampen style":

$$\pi_1(\tilde{X};\star,\tilde{a}_1,\ldots,\tilde{a}_m)*_{\pi_1(\partial_i,\tilde{a}_i)}\pi_{1,w}(a_i,Q_i).$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

EDWARD WITTEN

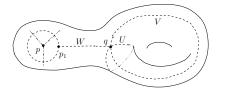


FIGURE 2. A Riemann surface C, here taken to be of genus $g_C = 1$, with an irregular singularity at a point p. A basepoint is taken at q. Show are the Stokes rays near p and the important paths in defining the generalized monodromy data.

<ロト <回ト < 回ト < 回ト :

큰

Figure: Wild fundamental groupoid: g=1, m=1

Wild character varieties: the global case

Let *G* be a complex *reductive* linear algebraic group. Let $(X, (a_1, Q_1), \dots, (a_m, Q_m))$ be an *irregular curve*, with $G_i = G$, forall $i = 1, \dots, m$.

The space of "group homomorphisms":

 $Hom_{gr}(\pi_{1,w}((X, (a_1, Q_1), \dots, (a_m, Q_m)); \star, \tilde{a}_1, \dots, \tilde{a}_m), G)$ is a smooth affine variety, it has an action of G^{m+1} , the quotient (in an algebraic sense) is a *wild character variety*.

INVARIANTS I...

J.P. Ramis

Presentatior Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Wild character varieties and deformations

We interpret the wild character variety associated to an irregular curve as a fiber above a "point" corresponding to this irregular curve, then we get a fiber space above the moduli of irregular curves (X is fixed and we move the regular and irregular singularities respecting the "non crossing" restrictions). Iso-irregular deformation defines a *connection* on this bundle, that is a way to identify canonically the fibres above a small "simply-connected" open subset of the basis. Hence the "fundamental group of the basis" acts on the fibres, that is on each wild character variety.

It remains to understand the "fundamental group of the basis", that is the *global wild braid group*, and its action.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *G* be a complex *reductive* linear algebraic group. Let $(X, (a_1, Q_1), \dots, (a_m, Q_m))$ be an *irregular curve*, with $G_i = G$, forall $i = 1, \dots, m$.

There are some actions on the corresponding *wild character variety* :

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *G* be a complex *reductive* linear algebraic group. Let $(X, (a_1, Q_1), \dots, (a_m, Q_m))$ be an *irregular curve*, with $G_i = G$, forall $i = 1, \dots, m$.

There are some actions on the corresponding *wild character variety* :

• of a classical pure braid group P_{m-1} ;

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *G* be a complex *reductive* linear algebraic group. Let $(X, (a_1, Q_1), \dots, (a_m, Q_m))$ be an *irregular curve*, with $G_i = G$, forall $i = 1, \dots, m$.

There are some actions on the corresponding *wild character variety* :

- of a classical pure braid group *P*_{*m*-1};
- of *m* copies of the wild braid group associated to *G*;

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *G* be a complex *reductive* linear algebraic group. Let $(X, (a_1, Q_1), \dots, (a_m, Q_m))$ be an *irregular curve*, with $G_i = G$, forall $i = 1, \dots, m$.

There are some actions on the corresponding *wild character variety* :

- of a classical pure braid group *P*_{*m*-1};
- of *m* copies of the wild braid group associated to *G*;
 It remains to "put the things together". I *conjecture* that there is a:

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Let *G* be a complex *reductive* linear algebraic group. Let $(X, (a_1, Q_1), \dots, (a_m, Q_m))$ be an *irregular curve*, with $G_i = G$, forall $i = 1, \dots, m$.

There are some actions on the corresponding *wild character variety* :

- of a classical pure braid group *P*_{*m*-1};
- of *m* copies of the wild braid group associated to *G*;
 It remains to "put the things together". I *conjecture* that there is a:

"braiding of braids",

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Wild braids: the global case

Let *G* be a complex *reductive* linear algebraic group. Let $(X, (a_1, Q_1), \dots, (a_m, Q_m))$ be an *irregular curve*, with $G_i = G$, forall $i = 1, \dots, m$.

There are some actions on the corresponding *wild character variety* :

- of a classical pure braid group *P*_{*m*-1};
- of *m* copies of the wild braid group associated to *G*;
 It remains to "put the things together". I *conjecture* that there is a:

"braiding of braids",

a *G*-braid is "hidden" in an "infinitesimal neighborhood" of each classical strand (of P_{m-1}).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Figure: Braiding of braids

Braiding of braids and wild mapping class groups

The *global wild braid group* is described as a (pure) braiding of (generalized) braids group.

Using "natural generators" of braids of braids groups, it is "easy" to compute the action of these groups on "natural generators" of the wild fundamental groups (the action of "wild mapping class groups"). Then we can see that the corresponding actions on the wild character varieties are *polynomial* (they are computed using matrix multiplications).

INVARIANTS I...

J.P. Ramis

Presentatior Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Braiding of braiding of... braiding of braids

For more *degenerate* cases of irregular points, there are *multi-levelled Stokes phenomena* (several slopes), I conjecture that in such cases we get a *multi-scale braiding*, in Russian dolls style (cf. Boalch).

Figure: Russian dolls: a multiscale metaphor...

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Generalized isomonodromic systems Following Y. Sibuya

Let *U* be an open set in **C** and *V* a polydisc in \mathbf{C}^n . We consider an holomorphic *parametrized* differential system:

 $(\Delta): \frac{dY}{dz} = A(z,t)Y \text{ on } U \times V ((z,t) \in U \times V).$

We will say that the system (Δ) is *isomonodromic* if there exists a covering $(U_i)_{i \in I}$ of U by simply connected open sets and fundamental systems of solutions Y_i on $U_i \times V$ such that the *connection matrices* $C_{jk} := Y_j^{-1} Y_k$ are *independant* of $t \in V$.

The system (Δ) is *isomonodromic* if and only if there exists *n* holomorphic invertible matrices $B_1 \dots, B_n$ on $U \times V$ such that the Pfaffian system:

$$\frac{\partial Y}{\partial z} = A(z,t)Y, \quad \frac{\partial Y}{\partial t_h} = B_h(z,t)Y, \quad h = 1, \dots, n$$

is completely integrable.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

The system $(\Delta) : \frac{dY}{dz} = A(z, t) Y$ is *isomonodromic* if and only if there exists *n* holomorphic invertible matrices $B_1 \dots, B_n$ on $U \times V$ such that the Pfaffian system:

$$\frac{\partial Y}{\partial z} = A(z,t)Y, \quad \frac{\partial Y}{\partial t_h} = B_h(z,t)Y, \quad h = 1, \dots, n$$

is *completely integrable*, that is if we have (*):

$$\frac{\partial B_h}{\partial z} - \frac{\partial A}{\partial t_h} = [A, B_h], \quad h = 1, \dots, n$$
$$\frac{\partial B_h}{\partial t_k} - \frac{\partial B_k}{\partial t_h} = [B_k, B_h], \quad h, k = 1, \dots, n$$

Equivalently, if $\Omega := Adz + \sum_{h=1}^{n} B_h dt_h$, $d\Omega - \Omega \wedge \Omega = 0$.

Using summation in sectors at each irregular singular point, we can define a notion of *iso-irregular* deformation. Using wild RH it can be translated in terms of *natural* connections on wild character varieties. Then: RH_w : transcendental dynamics of (*) \rightarrow algebraic dynamics

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

APPLICATION TO THE DYNAMICS OF THE PAINLEVÉ EQUATIONS

(Conjectures...)

イロト イヨト イヨト イヨト

-2

The rules of the game following van der Put and Saito

We consider local families of rational linear systems of rank two on $P^1(\mathbf{C})$, with structure group $SL_2(\mathbf{C})$ (i. e. trace-free matrices):

$$\frac{dY}{dz} = A(z,t)Y$$

(regular or irregular singularities, ramified or not), $t \in U \subset \mathbf{C}^m$ is a *parameter*. We denote *S* the singular set and $|S| \in \mathbf{N}^*$ its cardinal. We denote r(a) the Katz rank (slope of the Newton polygon) at a singular point *a*, $r(a) \in \mathbf{N}$ or $r(a) \in \frac{1}{2} + \mathbf{N}$.

We ask that the dimension of the fibers of RH (or RH_w is one (working up the action of the Mobius group or a subgroup). Then |S| > 4 is excluded and there are only the following possibilities:

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

• |S| = 4, then $S = \{0, 1, \infty, t\}$, only regular singular points;

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

- |S| = 4, then $S = \{0, 1, \infty, t\}$, only regular singular points;
- 2 |S| = 3, then $S = \{0, 1, \infty\}$, only one irregular point ∞ with $r(\infty) \in \{1, \frac{1}{2}\}$;

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

- |S| = 4, then $S = \{0, 1, \infty, t\}$, only regular singular points;
- 2 |S| = 3, then $S = \{0, 1, \infty\}$, only one irregular point ∞ with $r(\infty) \in \{1, \frac{1}{2}\}$;
- 3 |S| = 2, then $S = \{0, \infty\}$, one regular point and one irregular point *or* two irregular points;

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois heory

Open problems

- |S| = 4, then $S = \{0, 1, \infty, t\}$, only regular singular points;
- ② |S| = 3, then $S = \{0, 1, \infty\}$, only one irregular point ∞ with $r(\infty) \in \{1, \frac{1}{2}\}$;
- 3 |S| = 2, then $S = \{0, \infty\}$, one regular point and one irregular point *or* two irregular points;
- |S| = 1, then $S = \{\infty\}$, one irregular point.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

- |S| = 4, then $S = \{0, 1, \infty, t\}$, only regular singular points;
- ② |S| = 3, then $S = \{0, 1, \infty\}$, only one irregular point ∞ with $r(\infty) \in \{1, \frac{1}{2}\}$;
- 3 |S| = 2, then $S = \{0, \infty\}$, one regular point and one irregular point *or* two irregular points;
- |S| = 1, then $S = \{\infty\}$, one irregular point.

There are relations with *Heun equations* (ordinary, confluent, biconfluent, doubly-confluent and triconfluent).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

The ten families of "Painlevé systems"

Dynkin	Painlevé equation	r(0)	r(1)	$r(\infty)$	r(t)	$\dim \mathcal{P}$
$ ilde{D}_4$	PVI	0	0	0	0	4
\tilde{D}_5	PV	0	0	1	-	3
\tilde{D}_6	$PV_{deg} = PIII(D6)$	0	0	1/2	-	2
\tilde{D}_6	PIII(D6)	1	-	1	1	2
\tilde{D}_7	PIII(D7)	1/2	I	1	-	1
\tilde{D}_8	PIII(D8)	1/2	-	1/2	-	0
\tilde{E}_6	PIV	0	-	2	-	2
\tilde{E}_7	PII	0	-	3/2	-	1
\tilde{E}_7	PII	-	-	3	-	1
\tilde{E}_8	PI	-	-	5/2	-	0

TABLE 1. Classification of Families

Figure: Following van der Put and Saito, r(.) is the Katz rank at the singular points. There are ramified cases

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Table of the systems and of the (wild) characteristic varieties

$$\begin{array}{ll} (\textbf{0}, \textbf{0}, \textbf{0}, \textbf{0}). \mbox{ PVI. } & \frac{d}{dz} + \frac{A_0}{z} + \frac{A_1}{z-1} + \frac{A_t}{z-t}, \mbox{ all } tr(A_*) = 0. \\ x_1 x_2 x_3 + x_1^2 + x_2^2 + x_3^2 - s_1 x_1 - s_2 x_2 - s_3 x_3 + s_4 = 0, \mbox{ with } \\ s_i = a_i a_4 + a_j a_k, \quad (i, j, k) = \mbox{ a cyclic permutation of } (1, 2, 3), \\ s_4 = a_1 a_2 a_3 a_4 + a_1^2 + a_2^2 + a_3^2 + a_4^2 - 4 \mbox{ with } a_1, a_2, a_3, a_4 \in \mathbb{C}. \\ (\textbf{0}, \textbf{0}, \textbf{1}). \mbox{ PV. } & \frac{d}{dz} + \frac{A_0}{z} + \frac{A_1}{z-1} + t/2 \cdot \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \mbox{ all } tr(A_*) = 0. \\ x_1 x_2 x_3 + x_1^2 + x_2^2 - (s_1 + s_2 s_3) x_1 - (s_2 + s_1 s_3) x_2 - s_3 x_3 + s_3^2 + s_1 s_2 s_3 + 1 = 0 \mbox{ with } \\ s_1, s_2 \in \mathbb{C}, \mbox{ } s_3 \in \mathbb{C}^*. \\ (\textbf{0}, \textbf{0}, \textbf{1}/2). \mbox{ PV}_{deg}. & \frac{d}{dz} + \frac{A_0}{z} + \frac{A_1}{z-1} + \begin{pmatrix} 0 & t^2 \\ 0 & 0 \end{pmatrix}, \mbox{ all } tr(A_*) = 0. \\ x_1 x_2 x_3 + x_1^2 + x_2^2 + s_0 x_1 + s_1 x_2 + 1 = 0 \mbox{ with } s_0, s_1 \in \mathbb{C}. \\ (\textbf{1}, \textbf{-}, \textbf{1}). \mbox{ PIII}(\text{D6}). & z \frac{d}{dz} + A_0 z^{-1} + A_1 + \begin{pmatrix} \frac{4}{2} & 0 \\ 0 & -\frac{4}{2} \end{pmatrix} z, \mbox{ all } tr(A_*) = 0. \\ x_1 x_2 x_3 + x_1^2 + x_2^2 + (1 + \alpha \beta) x_1 + (\alpha + \beta) x_2 + \alpha \beta = 0 \mbox{ with } \alpha, \beta \in \mathbb{C}^*. \end{array}$$

Figure: Following van der Put and Saito

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

-2

(1/2,-,1). PIII(D7).	$z\frac{d}{dz} + A_0 z^{-1} + A_1 + {\binom{\frac{1}{2} \ 0}{0 - \frac{t}{2}}} z, \text{ all } tr(A_*) = 0.$				
$x_1x_2x_3 + x_1^2 + x_2^2 + \alpha x_1 + x_2 = 0$ with $\alpha \in \mathbb{C}^*$.					
(1/2,-,1/2). PIII(D8).	$z\frac{d}{dz} + \begin{pmatrix} 0 & 0 \\ -q & 0 \end{pmatrix} z^{-1} + \begin{pmatrix} \frac{p}{q} & -\frac{t}{q} \\ 1 & -\frac{p}{q} \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} z.$				
$x_1 x_2 x_3 + x_1^2 - x_2^2 - 1 = 0.$					
(0,-,2). PIV.	$z\frac{d}{dz} + A_0 + A_1 z + \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} z^2.$				
$x_1x_2x_3 + x_1^2 - (s_2^2 + s_1s_2)x_1 - s_2^2x_2 - s_2^2x_3 + s_2^2 + s_1s_2^3 = 0 \text{ with } s_1 \in \mathbb{C}, \ s_2 \in \mathbb{C}^*.$					
(0,-,3/2). PIIFN.	$z\frac{d}{dz} + A_0 + \begin{pmatrix} 0 & t+q \\ 1 & 0 \end{pmatrix} z + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} z^2$				
$x_1x_2x_3 + x_1 - x_2 + x_3 + s = 0$, with $s \in \mathbb{C}$.					
(-,-,3). PII.	$\frac{d}{dz} + A_0 + A_1 z + {\binom{1}{0}}{\binom{0}{-1}} z^2$, all $tr(A_*) = 0$.				
$x_1x_2x_3 - x_1 - \alpha x_2 - x_3 + \alpha + 1 = 0$ with $\alpha \in \mathbb{C}^*$.					
(-,-,5/2). PI.	$\frac{d}{dz} + {p + q^2 \choose -q - p} + {0 \choose 1} {q \choose 0} z + {0 \choose 0} {1 \choose 0} z^2.$				
$x_1 x_2 x_3 + x_1 + x_2 + 1 = 0.$					

Table of the equations of the monodromy spaces for the 10 families.

INVARIANTS I...

J.P. Ramis

Presentation

Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory Open problems

The case of P_{III} (D6) (following van der Put-Saito)

Two irregular singularities: 0, ∞ , with Katz rank 1 ($r(0) = r(\infty) = 1$), no regular singularity.

We have a family of differential systems:

 $z\frac{d}{dz} + A_0 z^{-1} + A_1 + A_\infty z$, up to a scaling $z \mapsto \lambda z$, we can suppose that:

$$Q_0 = (\frac{t}{2}z^{-1}, -\frac{t}{2}z^{-1})$$
 and $Q_\infty = (\frac{t}{2}z, -\frac{t}{2}z)$.

Choosing adapted basis for the spaces of formal solutions at 0 and ∞ , say (e_1, e_2) for \hat{Sol}_0 and (f_1, f_2) for \hat{Sol}_{∞} , we get:

$$\hat{M}_0 := \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}, \ S_{0,2} := \begin{pmatrix} 1 & 0 \\ a_1 & 1 \end{pmatrix}, \ S_{0,1} := \begin{pmatrix} 1 & a_2 \\ 0 & 1 \end{pmatrix},$$
$$\hat{M}_\infty := \begin{pmatrix} \beta & 0 \\ 0 & \beta^{-1} \end{pmatrix}, \ S_{\infty,2} := \begin{pmatrix} 1 & 0 \\ b_1 & 1 \end{pmatrix}, \ S_{\infty,1} := \begin{pmatrix} 1 & b_2 \\ 0 & 1 \end{pmatrix}.$$

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

We have:

$$M_0 = \hat{M}_0 S_{0,2} S_{0,1} = \begin{pmatrix} \alpha & \alpha a_2 \\ \alpha^{-1} a_1 & \alpha^{-1} (1+a_1 a_2) \end{pmatrix}$$
$$M_\infty = \hat{M}_\infty S_{\infty,2} S_{\infty,1} = \begin{pmatrix} \beta & \beta b_2 \\ \beta^{-1} b_1 & \beta^{-1} (1+b_1 b_2) \end{pmatrix}.$$

The matrice of the link $L : \hat{Sol}_0 \to \hat{Sol}_\infty$ in the choosen basis is $\begin{pmatrix} \ell_1 & \ell_2 \\ \ell_3 & \ell_4 \end{pmatrix} \in Sl_2(\mathbf{C})$. We set $M_0 = \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix}$. Using $M_\infty L = LM_0$, we eliminate the data at ∞ . Then the coordinate ring for the variety of representations is the localization of:

$$\mathbf{C}[m_1,\ldots,m_4,\ell_1,\ldots,\ell_4]/(m_1m_4-m_2m_3-1,\ell_1\ell_4-\ell_2\ell_3-1)$$

given by:

$$0 \neq \alpha = m_1$$
 and $0 \neq \beta = \ell_1 \ell_4 m_1 + \ell_2 \ell_4 m_3 - \ell_1 \ell_3 m_2 - \ell_2 \ell_3 m_4$.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

We quotient by the action of $C^* \times C^*$ on the basis (algebraically):

 $e_1, e_2, f_1, f_2 \mapsto \lambda e_1, \lambda^{-1} e_2, \mu f_1, \mu^{-1} f_2.$ The corresponding ring of invariants is a localization of a quotient of $\mathbf{C}[m_1, m_4, \ell_1 \ell_4, m_2 \ell_1 \ell_3, m_3 \ell_2 \ell_4]$. It is the wild character variety.

Setting $y_1 := \ell_1 \ell_4$, $y_2 := m_2 \ell_1 \ell_3$, $y_3 := m_4$, we get, for fixed α , β , a *cubic surface*:

 $y_2(\beta - \alpha y_1 + y_2 + (y_1 - 1)y_3) + y_1(y_1 - 1)(1 - \alpha y_3) = 0$, and, after some simple transformations the *cubic surface*:

$$\mathbf{S}_{\alpha,\beta} := \{x_1 x_2 x_3 + x_1^2 + x_2^2 + (1 + \alpha\beta) x_1 + (\alpha + \beta) x_2 + \alpha\beta = \mathbf{0}\}.$$

The wild braid groups at 0 and ∞ are isomorphic to $\pi_1(\mathbf{C}^*) \approx \mathbf{Z}$, they acts *polynomially* on the *wild character variety* $S_{\alpha,\beta}$.

As B_1 is trivial, following a conjecture above (braiding of braids) the wild group must be isomorphic to Z * Z.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INTEGRABILITY AND NON-LINEAR GALOIS THEORY

イロト イヨト イヨト イヨト

æ.,

Non-linear differential Galois theory

At the end of XIX-th century and at the beginning of XX-th century, J. Drach and afterwards E. Vessiot tried to create a non-linear differential Galois theory (which seduced P. Painlevé who used it to "prove that the solutions of P_I are "new transcendental functions"). Unfortunately their definitions were quite imprecise and there were important gaps in some of their proofs.

Recently H. Umemura (1996) and B. Malgrange (2001) returned to the problem. Their approaches are a priori quite different (they are equivalent in some sense in the algebraic case). Malgrange approach is similar to one of the approaches proposed by Vessiot.

We must replace the notion of group by the notion of *groupoid* (small category whose all the arrows are isomorphisms).

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Non-linear differential Galois theory

B. Malgrange:

La théorie de Galois différentielle est ce que l'algèbre voit de la dynamique.

Differential Galois theory is what algebra sees from the dynamics.

More formally, the *differential Galois groupoid* is the *Zariski closure of the dynamics*.

It remains to precise this definition...

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

Ajoutons que la méthode de Jules DRACH, qui est algébrique et conduit directement aux invariants différentiels des types de sous-groupes du groupe ponctuel général, en partant des équations différentielles, est, au fond, indépendant de la théorie des groupes de Lie et permet même de retrouver cette théorie.

Ernest VESSIOT a discuté et précisé les principes de la théorie précédente, et donné une autre théorie rationnelle d'intégration qui repose sur la considération du plus petit groupe de transformations en $x, y_1, ..., y_n$, laissant le système S invariant, et contenant la transformation infinitésimale

$$\frac{\partial f}{\partial x} + \sum_{h=1}^{n} \xi_h (x, y_1, ..., y_n) \frac{\partial f}{\partial y_h},$$

dont les équations de définition soient rationnelles. Ce groupe spécifique est isomorphe au groupe de rationalité : celui-ci exprime la manière dont les transformations du groupe spécifique échangent les courbes intégrales \mathcal{J} de S.

C'est la théorie de l'intégration logique qui a permis à Paul PAINLEVÉ d'affirmer que les équations qui por tent son nom définissent des transcendantes irréductibles aux transcendantes précédemment introduites dans l'analyse mathématique. On le constate en montrant que les équations dont il s'agit ont pour groupe de rationalité le groupe (simple) formé des transformations ponctuelles du plan qui laissent les aires invariantes.

Ernest VESSIOF, Directeur honoraire de l'École normale supérieure.

Figure: E. Vessiot. Groupe de Galois différentiel: groupe de rationalité et groupe spécifique, irréductibilité de PI

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Galois-Malgrange groupoid

For sake of simplicity M is a smooth complex affine algebraic variety.

Let $\mathcal{G}(M)$ be the groupoid of formal diffeomorphisms $(\hat{M}, a) \rightarrow (\hat{M}, b)$. roughly speaking a \mathcal{D} -groupoid is a sub-variety of $\mathcal{G}(M)$ defined by PDEs (differential ideal) whose projections on the jet spaces of finite order form an algebraic groupoid on $M \setminus Z$ (Z being an hypersurface). The Galois-Malgrange groupoid of an *autonomous system* $\dot{x} = X(x)$ is, by définition (Malgrange), the smallest \mathcal{D} -groupoid "containing" the flow of X.

This makes sense (Malgrange). Il y a version for *foliations* and a *discrete*: the smallest \mathcal{D} -groupoid "containing" an automorphism² or, more generally, a subgroup of automorphisms.

イロト 不得 トイヨト イヨト ニヨーダ

INVARIANTS I...

J.P. Ramis

Presentatior Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

²Similarly a dominant morphism

Galois-Malgrange groupoid

A *D*-groupoïde admits a *Lie algebra*.

The Galois-Malgrange groupoid of an *autonomous* system $\dot{x} = X(x)$ is the smallest \mathcal{D} -groupoid whose Lie algebra contains X.

In the algebraic case, one can define a \mathcal{D} -groupoid by the *conservation of some differential invariants* (Drach ?, P. Gabriel, J.F. Pommaret).

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Intégrability and non-linear differential Galois theory

There is a non-linear variant of Morales-Ramis theorem.

Theorem (Ramis 2002)

If an Hamiltonian system is integrable in Liouville sense by meromorphic first integrals, then the Lie algebra of its Galois-Malgrange groupoid & is abelian.

This result follows easily from a symplectic lemma.

In the algebraic case one can deduce from the above result Morales-Ramis-Simó theorem (and a fortiori Morales-Ramis theorem) using Artin theorem: Casale 2009.

INVARIANTS I ...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ - ヨー のへの

Integrability: a change of point of view

In the spirit of Drach and Vessiot, it is possible to *define* some notions of integrability using the Galois-Malgrange groupoid \mathfrak{G} .

Some possible definitions ?

More and more restrictive definitions of integrability.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

A dynamical system (continuous or discrete) on a complex analytic manifold *M* is said *integrable* if its Galois-Malgrange groupoid is *strictly smaller* than &(*M*).

INVARIANTS I...

J.P. Ramis

Presentatior Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

- A dynamical system (continuous or discrete) on a complex analytic manifold *M* is said *integrable* if its Galois-Malgrange groupoid is *strictly smaller* than &(*M*).
- A Hamiltonian dynamical system (continuous or discrete) on a symplectic complex analytic manifold (*M*, ω) is said *integrable* if its Galois-Malgrange groupoid is *strictly smaller* than the invariance sub-groupoid of ω in 𝔅(*M*).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

- A dynamical system (continuous or discrete) on a complex analytic manifold *M* is said *integrable* if its Galois-Malgrange groupoid is *strictly smaller* than &(*M*).
- A Hamiltonian dynamical system (continuous or discrete) on a symplectic complex analytic manifold (*M*, ω) is said *integrable* if its Galois-Malgrange groupoid is *strictly smaller* than the invariance sub-groupoid of ω in 𝔅(*M*).
- A dynamical system (continuous or discrete) on a complex analytic manifold *M* is said *integrable* if its Lie Galois-Malgrange algebra & is *solvable*.

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

- A dynamical system (continuous or discrete) on a complex analytic manifold *M* is said *integrable* if its Galois-Malgrange groupoid is *strictly smaller* than &(*M*).
- A Hamiltonian dynamical system (continuous or discrete) on a symplectic complex analytic manifold (*M*, ω) is said *integrable* if its Galois-Malgrange groupoid is *strictly smaller* than the invariance sub-groupoid of ω in 𝔅(*M*).
- A dynamical system (continuous or discrete) on a complex analytic manifold *M* is said *integrable* if its Lie Galois-Malgrange algebra & is *solvable*.
- A dynamical system (continuous or discrete) on a complex analytic manifold *M* is said *integrable* if its Lie Galois-Malgrange algebra & is *abelian*.

ヘロト 人間 とくほと くほと

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

More precisely there is a whole hierarchy of notions of integrability according to the list of \mathcal{D} -subgroupoids of $\mathcal{G}(M)$. It is an old idea of Drach and Vessiot.

Integrability in the sense 3 is strongly related to the notion of integrability by quadratures (Casale, Malgrange).

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

-2

Non-integrability of Painlevé équations

To a Painlevé equation $y'' = \frac{d^2y}{dt^2} = f(t, y)$, we associate the vector field

$$X := \frac{\partial}{\partial t} + y' \frac{\partial}{\partial y} + f(t, y) \frac{\partial}{\partial y}$$

on the extended phase space $(t, y, y') \in \mathbf{C}^3$. We consider the 2-form $\gamma := i_X dt \wedge dy \wedge dy'$.

The Galois groupoid of a Painlevé équation is a sub-groupoid of the invariance groupoid \mathcal{G}_{γ} of the form γ , whose solutions are $\{\Gamma | \Gamma^* \gamma = \gamma\}$.

In the case of P_I , the Galois groupoid is \mathcal{G}_{γ} (Casale). It is the same for P_{VI} , except for the Picard-Painlevé case (Loray-Cantat). We conjecture that it is also the same for all the Painlevé équations for generic values of the parameters. **INVARIANTS I...**

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

A problem

The Riemann-Hilbert map is *analytic* but *not algebraic*, therefore the algebra is not the same on the two sides and, even if the two dynamics are conjugated, "what algebra sees from the dynamics" (therefore the Malgrange-Galois groupoid) *could be* different.

We conjecture that they "coincide" in the generic case (it is true for P_{VI} , according to Loray-Cantat).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

nvariants of Meromorphic D.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

<ロト < @ ト < 注 ト < 注 ト ご の < 0</p>

OPEN PROBLEMS

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Fill the gaps in what I sketched before (easy ?).

INVARIANTS I...

J.P. Ramis

Presentation

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへの

- Fill the gaps in what I sketched before (easy ?).
- Find the "good algebraic universal structure" for irregular deformations in the spirit of "algebraic alien derivations".

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Fill the gaps in what I sketched before (easy ?).
- Find the "good algebraic universal structure" for irregular deformations in the spirit of "algebraic alien derivations".
- Understand the relations with some works on the "non linear Stokes phenomena" for Painlevé equations (Its, Kitaev, Garoufalidis...). Resurgence ?

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

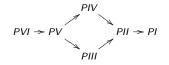
Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

- Fill the gaps in what I sketched before (easy ?).
- Find the "good algebraic universal structure" for irregular deformations in the spirit of "algebraic alien derivations".
- Understand the relations with some works on the "non linear Stokes phenomena" for Painlevé equations (Its, Kitaev, Garoufalidis...). Resurgence ?
- Understand the "confluence" of character varieties towards irregular character varieties (Cayley cubic surfaces ?). Understand the dynamics of Painlevé equations by "confluence" of the dynamics of P_{VI}.



INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

イロト イ理ト イヨト イヨト 三星 三名

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

1 2 3

4

Understand the (certainly strong) relations with the gauge theoretic approach to the *geometric Langlands program* introduced by Witten in relation with many topics in mathematical physics (conformal fields theory, electric-magnetic duality...).

INVARIANTS I...

J.P. Ramis

Presentatior Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ・ 亘 ・ の Q ()

1
2

- 3 4
- Understand the (certainly strong) relations with the gauge theoretic approach to the *geometric Langlands program* introduced by Witten in relation with many topics in mathematical physics (conformal fields theory, electric-magnetic duality...).
- Search for possible analogies with the Langlands program in number theory via some analogies between wild phenomena in complex foliations and wild phenomena in number theory: two-scaled infinitesimals (A. Weil, Deligne, Katz, André, Ramis...).

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > の (

1 2

- 3
- 4

. . .

- Understand the (certainly strong) relations with the gauge theoretic approach to the *geometric Langlands program* introduced by Witten in relation with many topics in mathematical physics (conformal fields theory, electric-magnetic duality...).
- Search for possible analogies with the Langlands program in number theory via some analogies between wild phenomena in complex foliations and wild phenomena in number theory: two-scaled infinitesimals (A. Weil, Deligne, Katz, André, Ramis...).
 Develop similar discrete theories: q-analog theories

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト 三 臣

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

<ロト < 部 > < 注 > < 注 > のQC

THE END

INVARIANTS I...

J.P. Ramis

Presentation Contents

Character varieties and the dynamics of Painlevé VI Equations

Invariants of Meromorphic O.D.E.

Braid groups and mapping class groups

Reductive groups and generalized braids groups

Wild character varieties, braiding of Stokes data and iso-irregular deformations

Application to the dynamics of the Painlevé equations

Non-linear Galois theory

Open problems

THANK YOU FOR YOUR ATTENTION