Lie-Poisson pencils related to semisimple Lie agebras: towards classification

Integrability in Dynamical Systems and Control, INSA de Rouen, 14-16.11.2012

Andriy Panasyuk

Faculty of Mathematics and Computer Science University of Warmia and Mazury Olsztyn, Poland & Pidstryhach Institute for the Applied Problems of Mathematics and Mechanics Lviv, Ukraine

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

A bi-Lie structure is a triple $(\mathfrak{g}, [,], [,]')$, where \mathfrak{g} is a vector space and [,], [,]' are two Lie brackets on \mathfrak{g} which are *compatible*, i.e. so that [,] + [,]' is a Lie bracket.

Example

Let $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$[x_{,A}y] = xAy - yAx.$$

Then $(\mathfrak{g}, [,], [,A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g} = \mathfrak{so}(n, \mathbb{K}), A \in \text{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g}, [,], [,A])$ is a bi-Lie structure.

A bi-Lie structure is a triple $(\mathfrak{g}, [,], [,]')$, where \mathfrak{g} is a vector space and [,], [,]' are two Lie brackets on \mathfrak{g} which are *compatible*, i.e. so that [,] + [,]' is a Lie bracket.

Example

Let $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$[x,_{\mathcal{A}} y] = x \mathcal{A} y - y \mathcal{A} x.$$

Then $(\mathfrak{g}, [,], [, A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g} = \mathfrak{so}(n, \mathbb{K}), A \in \text{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g}, [,], [,A])$ is a bi-Lie structure.

・ロット 本語 マネ 単マネ 日マ

A bi-Lie structure is a triple $(\mathfrak{g}, [,], [,]')$, where \mathfrak{g} is a vector space and [,], [,]' are two Lie brackets on \mathfrak{g} which are *compatible*, i.e. so that [,] + [,]' is a Lie bracket.

Example

Let $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$[x,_{\mathcal{A}} y] = x \mathcal{A} y - y \mathcal{A} x.$$

Then $(\mathfrak{g}, [,], [, A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g} = \mathfrak{so}(n, \mathbb{K}), A \in \text{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g}, [,], [, A])$ is a bi-Lie structure.

A bihamiltonian structure on a manifold M is a pair $\eta_1, \eta_2 \in \Gamma(\bigwedge^2 TM)$ such that $\eta_1, \eta_2, \eta_1 + \eta_2$ are Poisson.

Hierarchy of mechanisms (by complexity of structures):

- constant+constant (rather not interesting)
- constant+linear (proved to be powerful, eg. "argument translation")

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- linear+linear (topic of present talk)
- linear+quadratic (eg. argument translation of quadratic bracket towards "vanishing direction")

• etc.

A bihamiltonian structure on a manifold M is a pair $\eta_1, \eta_2 \in \Gamma(\bigwedge^2 TM)$ such that $\eta_1, \eta_2, \eta_1 + \eta_2$ are Poisson.

Hierarchy of mechanisms (by complexity of structures):

- constant+constant (rather not interesting)
- constant+linear (proved to be powerful, eg. "argument translation")

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- linear+linear (topic of present talk)
- linear+quadratic (eg. argument translation of quadratic bracket towards "vanishing direction")

etc.

Motivation I: bihamiltonian structures

Semisimple case

Applications of the $\mathfrak{so}(n,\mathbb{R})$ bi-Lie structure:

- Manakov top (*n*-dimensional free rigid body), here A is diagonal, the "inertia tensor" of the body (Bolsinov 1992)
- Klebsh-Perelomov case (Bolsinov 1992)

Another bi-Lie structure on $\mathfrak{so}(n,\mathbb{R}) \times \mathfrak{so}(n,\mathbb{R})$

Generalized Steklov–Lyapunov systems (Bolsinov–Fedorov 1992)

Nonsemisimple case

Works of Golubchik, Odesskii, Sokolov \sim 2004–2006

• Matrix integrable ODE's

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Motivation I: bihamiltonian structures

Semisimple case

Applications of the $\mathfrak{so}(n,\mathbb{R})$ bi-Lie structure:

- Manakov top (*n*-dimensional free rigid body), here A is diagonal, the "inertia tensor" of the body (Bolsinov 1992)
- Klebsh-Perelomov case (Bolsinov 1992)

Another bi-Lie structure on $\mathfrak{so}(n,\mathbb{R}) \times \mathfrak{so}(n,\mathbb{R})$

• Generalized Steklov-Lyapunov systems (Bolsinov-Fedorov 1992)

Nonsemisimple case

Works of Golubchik, Odesskii, Sokolov \sim 2004–2006

• Matrix integrable ODE's

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Quasigraded Lie algebras

A Lie algebra $(\tilde{\mathfrak{g}}, [,])$ with a decomposition $\tilde{\mathfrak{g}} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$ is quasigraded of degree 1 if $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j} \oplus \mathfrak{g}_{i+j+1}$

Quasigraded Lie algebras \rightarrow standard classical *R*-matrix

One checks that $\mathfrak{g}_+ := \bigoplus_{n \geq 0} \mathfrak{g}_n, \mathfrak{g}_- := \bigoplus_{n < 0} \mathfrak{g}_n$ are subalgebras.

Bi-Lie structures \rightarrow quasigraded Lie algebras

Let $(\mathfrak{g}, [,]_0, [,]_1)$ be a bi-Lie structure, $\tilde{\mathfrak{g}} := \mathfrak{g}[\lambda, 1/\lambda]$. Put $[,] = [,]_0 + \lambda[,]_1$ and extend this bracket to $\tilde{\mathfrak{g}}$. Then $\tilde{\mathfrak{g}}$ is quasigraded of degree 1.

(日)

Quasigraded Lie algebras

A Lie algebra $(\tilde{\mathfrak{g}}, [,])$ with a decomposition $\tilde{\mathfrak{g}} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$ is quasigraded of degree 1 if $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j} \oplus \mathfrak{g}_{i+j+1}$

Quasigraded Lie algebras \rightarrow standard classical *R*-matrix

One checks that $\mathfrak{g}_+ := \bigoplus_{n \ge 0} \mathfrak{g}_n, \mathfrak{g}_- := \bigoplus_{n < 0} \mathfrak{g}_n$ are subalgebras.

Bi-Lie structures \rightarrow quasigraded Lie algebras

Let $(\mathfrak{g}, [,]_0, [,]_1)$ be a bi-Lie structure, $\tilde{\mathfrak{g}} := \mathfrak{g}[\lambda, 1/\lambda]$. Put $[,] = [,]_0 + \lambda[,]_1$ and extend this bracket to $\tilde{\mathfrak{g}}$. Then $\tilde{\mathfrak{g}}$ is quasigraded of degree 1.

Quasigraded Lie algebras

A Lie algebra $(\tilde{\mathfrak{g}}, [,])$ with a decomposition $\tilde{\mathfrak{g}} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$ is quasigraded of degree 1 if $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j} \oplus \mathfrak{g}_{i+j+1}$

Quasigraded Lie algebras \rightarrow standard classical *R*-matrix

One checks that $\mathfrak{g}_+ := \bigoplus_{n \geq 0} \mathfrak{g}_n, \mathfrak{g}_- := \bigoplus_{n < 0} \mathfrak{g}_n$ are subalgebras.

Bi-Lie structures \rightarrow quasigraded Lie algebras

Let $(\mathfrak{g}, [,]_0, [,]_1)$ be a bi-Lie structure, $\tilde{\mathfrak{g}} := \mathfrak{g}[\lambda, 1/\lambda]$. Put $[,] = [,]_0 + \lambda[,]_1$ and extend this bracket to $\tilde{\mathfrak{g}}$. Then $\tilde{\mathfrak{g}}$ is quasigraded of degree 1.

Applications

Landau-Livshits PDE (the so(n, ℝ) bi-Lie structure, n = 3, Holod 1987)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 Other finite- and infinite-dimensional systems (Skrypnyk, Golubchik–Sokolov, Yanovski)

Useful notation

Let \mathfrak{g} be a Lie algebra and $N:\mathfrak{g}\to\mathfrak{g}$ a linear operator. Put

 $[x, y]_N := [Nx, y] + [x, Ny] - N[x, y].$

Definition

Let $\{[,]^{\nu}\}_{\nu \in V}$ be a *n*-dimensional vector space of Lie structures on a vector space \mathfrak{g} . It is called *irreducible* if the Lie algebras $(\mathfrak{g}, [,]^{\nu})$ do not have common nontrivial ideals and *closed* if

 $\forall x \in \mathfrak{g} \ \forall v, w \in V \ \exists u \in V : [,]_{\mathrm{ad}^{w}x}^{v} := [,]^{u}, \mathrm{ad}^{w}x(y) = [x, y]^{w}.$

Useful notation

Let \mathfrak{g} be a Lie algebra and $N:\mathfrak{g}\to\mathfrak{g}$ a linear operator. Put

 $[x, y]_N := [Nx, y] + [x, Ny] - N[x, y].$

Definition

Let $\{[,]^{\nu}\}_{\nu \in V}$ be a *n*-dimensional vector space of Lie structures on a vector space \mathfrak{g} . It is called *irreducible* if the Lie algebras $(\mathfrak{g}, [,]^{\nu})$ do not have common nontrivial ideals and *closed* if

$$\forall x \in \mathfrak{g} \ \forall v, w \in V \ \exists u \in V : [,]_{\mathrm{ad}^{w}x}^{v} := [,]^{u}, \mathrm{ad}^{w}x(y) = [x, y]^{w}.$$

Kantor–Persits 1988 (announced only)

The list of irreducible closed vector spaces of Lie structures:

•
$$\mathfrak{g} = \mathfrak{so}(n, \mathbb{K}), \{[A,A]\}_{A \in \mathrm{Symm}(n, \mathbb{K})}$$

•
$$\mathfrak{g} = \mathfrak{sp}(n, \mathbb{K}), \{[,A]\}_{A \in \mathfrak{m}(n, \mathbb{K})}$$

several nonsemisimple cases

here

$$[X_{\mathcal{A}} Y] := XAY - YAX,$$

 $\mathfrak{sp}(n, \mathbb{K}) = \{X \in \mathfrak{gl}(2n, \mathbb{K}) \mid XJ + JX^T = 0\}$ the symplectic Lie algebra, $\mathfrak{m}(n, \mathbb{K}) := \{X \in \mathfrak{gl}(2n, \mathbb{K}) \mid XJ - JX^T = 0\}$ its orthogonal complement in $\mathfrak{gl}(2n, \mathbb{K})$ w.r.t. "trace form"

Odesskii–Sokolov 2006

Classification of "bi-associative structures" (\cdot, \circ) on $\mathfrak{gl}(n, \mathbb{K}) \Longrightarrow$ Examples of bi-Lie structures on $\mathfrak{gl}(n, \mathbb{K})$ (which do not restrict to $\mathfrak{sl}(n, \mathbb{K})$)

Say that a bi-Lie structure $\mathcal{B} := (\mathfrak{g}, [,], [,]')$ is semisimple if $(\mathfrak{g}, [,])$ is semisimple.

Known examples of semisimple bi-Lie structures

- KP1 $(\mathfrak{so}(n,\mathbb{C}),[,],[,A])$ (Kantor–Persits 1988)
- KP2 $(\mathfrak{sp}(n,\mathbb{C}),[,],[,A])$ (Kantor-Persits 1988)
- GS1 Let $(\mathfrak{g}, [,])$ be semisimple. There exists a bi-Lie structure related to any \mathbb{Z}_n -grading $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ on $(\mathfrak{g}, [,])$ and to decomposition of the subalgebra $\mathfrak{g}_0 = \mathfrak{g}_0^1 \oplus \mathfrak{g}_0^2$ to two subalgebras (Golubchik–Sokolov 2002)
 - P Let (g, [,]) be semisimple. There exists a bi-Lie structure related to any parabolic subalgebra $g_0 \subset g$ (P 2006)
- $\begin{array}{l} \mathsf{GS2} \ \mathsf{Examples on } \mathfrak{sl}(3,\mathbb{C}), \mathfrak{so}(4,\mathbb{C}) \ \mathsf{related to} \ \mathbb{Z}_2\times\mathbb{Z}_2 \mathsf{-}\mathsf{gradings} \\ & (\mathsf{Golubchik}\mathsf{-}\mathsf{Sokolov} \ 2002) \end{array}$

Obvious or Easy:

Let $(\mathfrak{g}, [,])$ be a Lie algebra, [,]' a bilinear bracket.

- [,]' "compatible" with $[,] \Longleftrightarrow [,]'$ is a 2-cocycle on $(\mathfrak{g},[,])$
- In particular, if $(\mathfrak{g}, [,], [,]')$ is a semisimple bi-Lie str., then $[,]' = [,]_W = [W \cdot, \cdot] + [\cdot, W \cdot] - W[\cdot, \cdot]$ for some $W : \mathfrak{g} \to \mathfrak{g}$
- (Magri–Kosmann-Schwarzbach) $[,]_N$ is a Lie bracket for some $N : \mathfrak{g} \to \mathfrak{g} \iff T_N(\cdot, \cdot) := [N \cdot, N \cdot] N[\cdot, \cdot]_N$ is a 2-cocycle on $(\mathfrak{g}, [,])$
- In particular, $(\mathfrak{g}, [,], [,]')$ is a semisimple bi-Lie str. $\iff [,]' = [,]_W$ and $T_W(\cdot, \cdot) = [\cdot, \cdot]_P$, where $P : \mathfrak{g} \to \mathfrak{g}$ is another linear operator. Moreover, the operators W, P are defined up to adding of inner differentiations $\operatorname{ad} x$.

 $T_N(X, Y) = [NX, NY] - N([NX, Y] + [X, NY] - N[X, Y])$

Semisimple bi-Lie structures: examples of leading operators

Definition

Given a semisimple bi-Lie structure \mathcal{B} call W such that $[,]' = [,]_W$ a leading operator for \mathcal{B} and P a primitive for W. They satisfy the main identity (MI)

 $T_W(\cdot,\cdot)=[\cdot,\cdot]_P$

Example

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a $\mathbb{Z}/n\mathbb{Z}$ -grading on \mathfrak{g} . Put $W|_{\mathfrak{g}_i} = i\mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ and $P|_{\mathfrak{g}_i} = \frac{1}{2}i(n-i)\mathrm{Id}_{\mathfrak{g}_i}$. One checks MIdirectly.

Example

Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ (sum of subalgebras). Put $W|_{\mathfrak{g}_i} = \omega_i \mathrm{Id}_{\mathfrak{g}_i}, i = 1, 2$, where $\omega_{1,2}$ are any scalars. Then $T_W = 0$ (so put P = 0 in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_1 a parabolic subalgebra and \mathfrak{g}_2 its "complement".

Semisimple bi-Lie structures: examples of leading operators

Definition

Given a semisimple bi-Lie structure \mathcal{B} call W such that $[,]' = [,]_W$ a leading operator for \mathcal{B} and P a primitive for W. They satisfy the main identity (MI)

 $T_W(\cdot,\cdot)=[\cdot,\cdot]_P$

Example

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a $\mathbb{Z}/n\mathbb{Z}$ -grading on \mathfrak{g} . Put $W|_{\mathfrak{g}_i} = i\mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ and $P|_{\mathfrak{g}_i} = \frac{1}{2}i(n-i)\mathrm{Id}_{\mathfrak{g}_i}$. One checks MI directly.

Example

Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ (sum of subalgebras). Put $W|_{\mathfrak{g}_i} = \omega_i \mathrm{Id}_{\mathfrak{g}_i}, i = 1, 2$, where $\omega_{1,2}$ are any scalars. Then $T_W = 0$ (so put P = 0 in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_1 a parabolic subalgebra and \mathfrak{g}_2 its "complement".

Semisimple bi-Lie structures: examples of leading operators

Definition

Given a semisimple bi-Lie structure \mathcal{B} call W such that $[,]' = [,]_W$ a leading operator for \mathcal{B} and P a primitive for W. They satisfy the main identity (MI)

 $T_W(\cdot,\cdot)=[\cdot,\cdot]_P$

Example

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a $\mathbb{Z}/n\mathbb{Z}$ -grading on \mathfrak{g} . Put $W|_{\mathfrak{g}_i} = i\mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ and $P|_{\mathfrak{g}_i} = \frac{1}{2}i(n-i)\mathrm{Id}_{\mathfrak{g}_i}$. One checks MI directly.

Example

Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ (sum of subalgebras). Put $W|_{\mathfrak{g}_i} = \omega_i \mathrm{Id}_{\mathfrak{g}_i}, i = 1, 2$, where $\omega_{1,2}$ are any scalars. Then $T_W = 0$ (so put P = 0 in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_1 a parabolic subalgebra and \mathfrak{g}_2 its "complement".

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g}) = \operatorname{ad} \mathfrak{g} \oplus C$, where $C = (\operatorname{ad} \mathfrak{g})^{\perp}$ is the direct complement to $\operatorname{ad} \mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called *principal* if $W \in C$.

Theorem

There exists a unique principal operator W with the property [,]' = [,]_W. Call it the principal (leading) operator of a bi-Lie structure (g, [,], [,]').

If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the trace form on End(g).

Example

For $\mathfrak{so}(n, \mathbb{K})$ bi-Lie structure we have $W = (1/2)(L_A + R_A)$ (operators of left and right multiplication by A).

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g}) = \operatorname{ad} \mathfrak{g} \oplus C$, where $C = (\operatorname{ad} \mathfrak{g})^{\perp}$ is the direct complement to $\operatorname{ad} \mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called *principal* if $W \in C$.

Theorem

There exists a unique principal operator W with the property

 [,]' = [,]_W. Call it the principal (leading) operator of a bi-Lie structure (g, [,], [,]').

If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the trace form on End(g).

Example

For $\mathfrak{so}(n, \mathbb{K})$ bi-Lie structure we have $W = (1/2)(L_A + R_A)$ (operators of left and right multiplication by A).

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g}) = \operatorname{ad} \mathfrak{g} \oplus C$, where $C = (\operatorname{ad} \mathfrak{g})^{\perp}$ is the direct complement to $\operatorname{ad} \mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called *principal* if $W \in C$.

Theorem

There exists a unique principal operator W with the property

 [,]' = [,]_W. Call it the principal (leading) operator of a bi-Lie structure (g, [,], [,]').

If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the trace form on End(g).

Example

For $\mathfrak{so}(n, \mathbb{K})$ bi-Lie structure we have $W = (1/2)(L_A + R_A)$ (operators of left and right multiplication by A).

We say that bi-Lie structures $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ are strongly isomorphic (isomorphic) if there exists an automorphism of the Lie algebra $(\mathfrak{g}, [,])$ sending the bracket [,]' to [,]'' (to a linear combination $\alpha_1[,] + \alpha_2[,]'')$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ be two semisimple bi-Lie structures and let W', W'' be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra $(\mathfrak{g}, [,])$ with the property $\phi \circ W' = W'' \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \iff classification of principal operators satisfyting MI up to action of automorphisms, rescaling, and adding scalar operators

We say that bi-Lie structures $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ are strongly isomorphic (isomorphic) if there exists an automorphism of the Lie algebra $(\mathfrak{g}, [,])$ sending the bracket [,]' to [,]'' (to a linear combination $\alpha_1[,] + \alpha_2[,]'')$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ be two semisimple bi-Lie structures and let W', W'' be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra $(\mathfrak{g}, [,])$ with the property $\phi \circ W' = W'' \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \iff classification of principal operators satisfyting MI up to action of automorphisms, rescaling, and adding scalar operators

We say that bi-Lie structures $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ are strongly isomorphic (isomorphic) if there exists an automorphism of the Lie algebra $(\mathfrak{g}, [,])$ sending the bracket [,]' to [,]'' (to a linear combination $\alpha_1[,] + \alpha_2[,]'')$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ be two semisimple bi-Lie structures and let W', W'' be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra $(\mathfrak{g}, [,])$ with the property $\phi \circ W' = W'' \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \iff classification of principal operators satisfying MI up to action of automorphisms, rescaling, and adding scalar operators

The pencil of Lie algebras and the times

Switch to $\mathbb{K}=\mathbb{C}$

Bi-Lie structure $(\mathfrak{g}, [,], [,]') \Longrightarrow$ Pencil of Lie brackets $(\mathfrak{g}, [,]^t), [,]^t := [,]' - t[,], t \in \mathbb{C}$

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure, W its principal operator, P its symmetric primitive and let B(,) be the Killing form of $(\mathfrak{g}, [,])$. Then the Killing form B^t of the Lie algebra $(\mathfrak{g}, [,]^t)$ is given by the formula

$$B^t(x,y) = B((W-tI)x,(W-tI)y) - 2B(Px,y), \ x,y \in \mathfrak{g},$$

In particular, ker $B^t \neq \{0\} \iff \det(W^*W - 2P - t(W + W^*) + t^2I) = 0.$

Definition

The elements of the finite set $T := \{t \in \mathbb{C} \mid \ker B^t \neq \{0\}\}$ are called the *times* of the bi-Lie structure.

The pencil of Lie algebras and the times

Switch to $\mathbb{K}=\mathbb{C}$

Bi-Lie structure $(\mathfrak{g}, [,], [,]') \Longrightarrow$ Pencil of Lie brackets $(\mathfrak{g}, [,]^t), [,]^t := [,]' - t[,], t \in \mathbb{C}$

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure, W its principal operator, P its symmetric primitive and let B(,) be the Killing form of $(\mathfrak{g}, [,])$. Then the Killing form B^t of the Lie algebra $(\mathfrak{g}, [,]^t)$ is given by the formula

$$B^t(x,y) = B((W-tI)x,(W-tI)y) - 2B(Px,y), \ x,y \in \mathfrak{g},$$

In particular, ker $B^t \neq \{0\} \iff \det(W^*W - 2P - t(W + W^*) + t^2I) = 0.$

Definition

The elements of the finite set $T := \{t \in \mathbb{C} \mid \ker B^t \neq \{0\}\}$ are called the *times* of the bi-Lie structure.

The central subalgebra

In particular, if $t \in T$, the center \mathfrak{z}^t of the Lie algebra $(\mathfrak{g}, [,]^t)$ can be nontrivial. Put $\Theta := \{t \in T \mid \mathfrak{z}^t \neq \{0\}\}.$

Theorem

For $x \in \mathfrak{g}, x \neq 0$, the following conditions are equivalent:

- x belongs to the center \mathfrak{z}^{θ} of the bracket $[,]^{\theta} := [,]' \theta[,] = [,]_{W^{\theta}}$, here $W^{\theta} := W - \theta I$;
- x is the eigenvector of the principal operator W corresponding to the eigenvalue θ and [ad x, W] = 0.

Theorem

- The subset $\mathfrak{z}^{ heta}$ is a subalgebra in $(\mathfrak{g}, [,])$ for any $heta \in \Theta$;
- **2** $\mathfrak{z}^{\theta_i} \cap \mathfrak{z}^{\theta_j} = \{0\}$ if $\theta_i \neq \theta_j$;
- [3^{θ_i}, 3^{θ_j}] = 0 if θ_i ≠ θ_j; in particular, the set 3 := 3^{θ₁} ⊕ · · · ⊕ 3^{θ_m} is a subalgebra in (g, [,]) which is a direct sum of its ideals 3^{θ_i}. Call 3 the central subalgebra of (g, [,], [,]'). Moreover, 3 ⊂ ker P.

The central subalgebra

In particular, if $t \in T$, the center \mathfrak{z}^t of the Lie algebra $(\mathfrak{g}, [,]^t)$ can be nontrivial. Put $\Theta := \{t \in T \mid \mathfrak{z}^t \neq \{0\}\}.$

Theorem

For $x \in \mathfrak{g}, x \neq 0$, the following conditions are equivalent:

- x belongs to the center \mathfrak{z}^{θ} of the bracket $[,]^{\theta} := [,]' \theta[,] = [,]_{W^{\theta}}$, here $W^{\theta} := W - \theta I$;
- x is the eigenvector of the principal operator W corresponding to the eigenvalue θ and [ad x, W] = 0.

Theorem

• The subset
$$\mathfrak{z}^{ heta}$$
 is a subalgebra in $(\mathfrak{g}, [,])$ for any $heta \in \Theta$;

2
$$\mathfrak{z}^{ heta_i} \cap \mathfrak{z}^{ heta_j} = \{0\}$$
 if $heta_i
eq heta_j$;

[3^{θ_i}, 3^{θ_j}] = 0 if θ_i ≠ θ_j; in particular, the set 3 := 3^{θ₁} ⊕ · · · ⊕ 3^{θ_m} is a subalgebra in (g, [,]) which is a direct sum of its ideals 3^{θ_i}. Call 3 the central subalgebra of (g, [,], [,]'). Moreover, 3 ⊂ ker P.

$(\mathfrak{so}(6,\mathbb{C}),[,],[,A])$

$$A = \begin{bmatrix} a & 0 & 0 & 0 & 0 & 0 \\ 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & a & 0 & 0 & 0 \\ 0 & 0 & 0 & b & 0 & 0 \\ 0 & 0 & 0 & 0 & b & 0 \\ 0 & 0 & 0 & 0 & 0 & c \end{bmatrix}, \mathfrak{z} = \begin{bmatrix} * & * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 \\ 0 & 0 & 0 & * & * & 0 \\ 0 & 0 & 0 & * & * & 0 \\ 0 & 0 & 0 & * & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへで

В

 $\mathsf{i}\text{-}\mathsf{Lie} \nleftrightarrow \mathbb{Z}/n\mathbb{Z}\text{-}\mathsf{grading} \ \mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1} \Longrightarrow \mathfrak{z} = \mathfrak{g}_0.$

$(\mathfrak{so}(6,\mathbb{C}),[,],[,A])$

$$A = \begin{bmatrix} a & 0 & 0 & 0 & 0 & 0 \\ 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & a & 0 & 0 & 0 \\ 0 & 0 & 0 & b & 0 & 0 \\ 0 & 0 & 0 & 0 & b & 0 \\ 0 & 0 & 0 & 0 & 0 & c \end{bmatrix}, \mathfrak{z} = \begin{bmatrix} * & * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 \\ 0 & 0 & 0 & * & * & 0 \\ 0 & 0 & 0 & * & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

i-Lie $\longleftrightarrow \mathbb{Z}/n\mathbb{Z}$ -grading $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1} \Longrightarrow \mathfrak{z} = \mathfrak{g}_0.$

Let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading of a Lie algebra $(\mathfrak{g}, [,])$, i.e. $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma$, Γ an abelian group. We say that a linear operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading if $W\mathfrak{g}_i \subset \mathfrak{g}_i$ for any $i \in \Gamma$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure and let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading. Then, if the principal operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading, so does its symmetric primitive P.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Main assumption: $\mathfrak{z} \supset \mathfrak{h}$

The central subalgebra \mathfrak{z} contains some Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ (w.r.t.[,]). *one slide back*

Let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading of a Lie algebra $(\mathfrak{g}, [,])$, i.e. $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma$, Γ an abelian group. We say that a linear operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading if $W\mathfrak{g}_i \subset \mathfrak{g}_i$ for any $i \in \Gamma$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure and let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading. Then, if the principal operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading, so does its symmetric primitive P.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Main assumption: $\mathfrak{z}\supset\mathfrak{h}$

The central subalgebra \mathfrak{z} contains some Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ (w.r.t.[,]). *one slide back*

Let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading of a Lie algebra $(\mathfrak{g}, [,])$, i.e. $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma$, Γ an abelian group. We say that a linear operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading if $W\mathfrak{g}_i \subset \mathfrak{g}_i$ for any $i \in \Gamma$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure and let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading. Then, if the principal operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading, so does its symmetric primitive P.

Main assumption: $\overline{\mathfrak{z} \supset \mathfrak{h}}$

The central subalgebra \mathfrak{z} contains some Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ (w.r.t.[,]). one slide back

The main assumption $\mathfrak{z} \supset \mathfrak{h}$ is equivalent to the following two conditions

• The principal operator $\mathcal{W} \in \operatorname{End}(\mathfrak{g})$ preserves the grading

$$\mathfrak{g} = \mathfrak{h} + \sum_{lpha \in R} \mathfrak{g}_{lpha}$$

related to the root decomposition with respect to the Cartan subalgebra \mathfrak{h} . In other words for some $\omega_{\alpha} \in \mathbb{C}$

$$W|_{\mathfrak{g}_{\alpha}} = \omega_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, W\mathfrak{h} \subset \mathfrak{h}.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• The operator $W|_{\mathfrak{h}}$ is diagonalizable.

 $\textit{Recall } W|_{\mathfrak{g}_{\alpha}} = \omega_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, \textit{W}\mathfrak{h} \subset \mathfrak{h}, \textit{P}|_{\mathfrak{g}_{\alpha}} = \pi_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha} = \pi_{-\alpha}, \textit{ put } \textit{P}|_{\mathfrak{h}} = 0.$

Then for any $\alpha \in R$

- there exist two times t_{1,α}, t_{2,α} (possibly equal) such that g_α ⊂ ker B<sup>t_{1,α} ∩ ker B<sup>t_{2,α}. They are the solutions of the quadratic equation (t − ω_α)(t − ω_{−α}) − 2π_α = 0. Moreover, if T_α := {t_{1,α}, t_{2,α}}, then T_α = T_{−α}.
 </sup></sup>
- $\sigma_{\alpha} = (1/2)(t_{1,\alpha} + t_{2,\alpha}), \kappa_{\alpha} = \pm \sqrt{((t_{1,\alpha} t_{2,\alpha})/2)^2 2\pi_{\alpha}}, \text{ where } \sigma_{\alpha} := (1/2)(\omega_{\alpha} + \omega_{-\alpha}), \kappa_{\alpha} := (1/2)(\omega_{\alpha} \omega_{-\alpha}).$
- (W − t_{1,α}I)(W − t_{2,α}I)H_α = 0, here H_α ∈ 𝔥, α ∈ R, is such that B(H_α, H) = α(H) for any H ∈ 𝔥. Consequently, H_α is either an eigenvector of W corresponding to the eigenvalue t_{1,α}, or an eigenvector of W corresponding to the eigenvalue t_{2,α}, or a sum of such eigenvectors. Hence W|_𝔥 is admissible in the following sense:

Definition

Let V be a vector space over \mathbb{R} and let $R \subset V$ be a reduced root system in V. A diagonalizable linear operator $U: V^{\mathbb{C}} \to V^{\mathbb{C}}$ will be called *R*-admissible if for any $\alpha \in R \subset V^{\mathbb{C}}$

• either there exist two eigenvectors $w_{1,\alpha}, w_{2,\alpha} \in V^{\mathbb{C}}$ corresponding to different eigenvalues $t_{1,\alpha}, t_{2,\alpha}$ of the operator U such that

$$\alpha = w_{1,\alpha} + w_{2,\alpha};$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

2 or α is an eigenvector of U corresponding to the eigenvalue t_{α} . Put $U_{\alpha} := \{t_{1,\alpha}, t_{2,\alpha}\}$ or $U_{\alpha} := \{t_{\alpha}\}.$

Examples of admissible operators

- Any diagonalizable operator with two eigenvalues is admissible.
- $R = \mathfrak{d}_n$, roots $\pm \epsilon_i \pm \epsilon_j (1 \le i < j \le n)$, here ϵ_i elements of the standard basis in \mathbb{R}^n . Put $U\epsilon_i = t_i\epsilon_i$ (KP1 with $A = \operatorname{diag}(t_1, t_1, \dots, t_n, t_n)$).
- $R = \mathfrak{b}_n$, roots $\pm \epsilon_i (1 \le i \le n), \pm \epsilon_i \pm \epsilon_j (1 \le i < j \le n)$. Again $U\epsilon_i = t_i\epsilon_i \text{ (KP1 with } A = \text{diag}(t_1, t_1, \dots, t_n, t_n, t_{n+1})).$
- $R = \mathfrak{c}_n$, roots $\pm 2\epsilon_i (1 \le i \le n), \pm \epsilon_i \pm \epsilon_j (1 \le i < j \le n)$. Again $U\epsilon_i = t_i\epsilon_i \text{ (KP2 with } A = \text{diag}(t_1, t_1, \dots, t_n, t_n)).$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

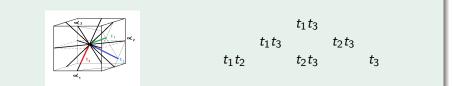
Examples of admissible operators

Example

 $R = \mathfrak{a}_n$, root basis $\alpha_1 = \epsilon_1 - \epsilon_2, \alpha_2 = \epsilon_2 - \epsilon_3, \dots, \alpha_n = \epsilon_n - \epsilon_{n+1}$. Put

$$\begin{array}{rcl} w_n & := & a\alpha_n \\ w_{n-1} & := & w_n & + & \alpha_{n-1} \\ w_{n-2} & := & & w_{n-1} & + & \alpha_{n-2} \\ & & \vdots \\ w_1 & := & & w_2 & + & \alpha_1, \end{array}$$

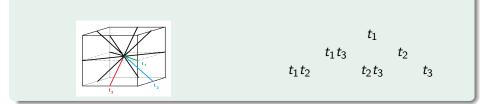
where $a \neq 0, 1$ is a complex parameter, and $U(w_i) := t_i w_i$. Then $\alpha_n = (1/a)w_n, \alpha_{n-1} = w_{n-1} - w_n, \alpha_{n-2} = w_{n-2} - w_{n-1}, \dots, \alpha_1 = w_1 - w_2$.



Examples of admissible operators

Example

 $R = \mathfrak{a}_n$. Put a = 1 in previous example.



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Definition

If $\alpha \in R$ is an eigenvector for $W|_{\mathfrak{h}}$ corresponding to eigenvalue $t_{1,\alpha}$ and $T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}, t_{2,\alpha} \neq t_{1,\alpha}$, we call $t_{2,\alpha}$ a virtual time

Example: KP1 on $\mathfrak{so}(5)$ with $A = \operatorname{diag}(t_1, t_1, t_2, t_2, t_3)$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Definition

If $\alpha \in R$ is an eigenvector for $W|_{\mathfrak{h}}$ corresponding to eigenvalue $t_{1,\alpha}$ and $T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}, t_{2,\alpha} \neq t_{1,\alpha}$, we call $t_{2,\alpha}$ a virtual time

Example: KP1 on $\mathfrak{so}(5)$ with $A = \operatorname{diag}(t_1, t_1, t_2, t_2, t_3)$

$$\begin{bmatrix} 0 & 2t_1 & t_1 + t_2 & t_1 + t_2 & t_1 + t_3 \\ 2t_1 & 0 & t_1 + t_2 & t_1 + t_2 & t_1 + t_3 \\ t_1 + t_2 & t_1 + t_2 & 0 & 2t_2 & t_2 + t_3 \\ t_1 + t_2 & t_1 + t_3 & t_2 + t_3 & t_2 + t_3 & 0 \end{bmatrix} \xrightarrow{t_1(t_3)}_{t_1(t_2)} t_1(t_2)$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

"Times selection rules" and antisymmetric part of W

Theorem

Let $\alpha, \beta, \gamma \in R$ be such that $\alpha + \beta + \gamma = 0$. Then only the following possibilities can occur:

1 either there exist $t_1, t_2, t_3 \in \mathbb{C}$ such that

$$T_{lpha} = \{t_1, t_2\}, T_{eta} = \{t_2, t_3\}, T_{\gamma} = \{t_3, t_1\};$$

2 or there exist $t_1, t_2 \in \mathbb{C}$ such that

$$T_{\alpha}=T_{\beta}=T_{\gamma}=\{t_1,t_2\},t_1\neq t_2,$$

Moreover, in Case 1 the following equality holds:

$$\kappa_{\alpha} + \kappa_{\beta} + \kappa_{\gamma} = 0$$

and in Case 2:

$$\kappa_{\alpha} + \kappa_{\beta} + \kappa_{\gamma} = \pm (t_1 - t_2)/2.$$

Pairs diagrams

Definition

Let R be a reduced root system. A collection $\{T_{\alpha}\}_{\alpha \in R}$ of unordered pairs $T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}$ of complex numbers is called a *pairs diagram* if

- $\ \, \bullet \ \ \, T_{\alpha}=T_{-\alpha} \ \text{for any} \ \alpha\in R;$
- ② for any $\alpha, \beta, \gamma \in R$ such that $\alpha + \beta + \gamma = 0$ the pairs $T_{\alpha}, T_{\beta}, T_{\gamma}$ obey "the times selection rules".

A pairs diagram $\{T_{\alpha}\}_{\alpha \in \mathbb{R}}$ is called *admissible* if there exists an admissible operator $U: V^{\mathbb{C}} \to V^{\mathbb{C}}$ such that $U_{\alpha} \subset T_{\alpha}$ for any $\alpha \in \mathbb{R}$; the pair $(U, \{T_{\alpha}\}_{\alpha \in \mathbb{R}})$ will be called *admissible* too.

Pairs diagrams

Definition

Let R be a reduced root system. A collection $\{T_{\alpha}\}_{\alpha \in R}$ of unordered pairs $T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}$ of complex numbers is called a *pairs diagram* if

- $\ \, \bullet \ \ \, T_{\alpha}=T_{-\alpha} \ \text{for any} \ \alpha\in R;$
- ② for any $\alpha, \beta, \gamma \in R$ such that $\alpha + \beta + \gamma = 0$ the pairs $T_{\alpha}, T_{\beta}, T_{\gamma}$ obey "the times selection rules".

A pairs diagram $\{T_{\alpha}\}_{\alpha \in \mathbb{R}}$ is called *admissible* if there exists an admissible operator $U: V^{\mathbb{C}} \to V^{\mathbb{C}}$ such that $U_{\alpha} \subset T_{\alpha}$ for any $\alpha \in \mathbb{R}$; the pair $(U, \{T_{\alpha}\}_{\alpha \in \mathbb{R}})$ will be called *admissible* too.

	± ±		$t_1(t_4)$							
Examples:	$t_1 t_2$	$t_1 t_3$	$t_2 t_3$ '		$t_1 t_3$		t2(t2		,	
	LT LZ		1213	$t_1 t_2$		$t_2 t_3$		$t_3(t_4)$		
	$t_1 t_3$					$t_1 t_2$				
$t_1 t_3$		$t_2 t_3$,		$t_1 t_2$		$t_1 t_2$			
$t_1 t_2$	t ₂ t ₃		t_3t_3	$t_1 t_1$		$t_1 t_2$		$t_1 t_2$		
						• • • •	< 🗗 🕨	(注) < 注) < 注)	æ	500

Let R be a reduced irreducible root system and let $\{T_{\alpha}\}_{\alpha \in R}$ be a pairs diagram. Assume that there exist $\alpha, \beta, \gamma \in R$ such that $\alpha + \beta + \gamma = 0$ and

$$T_{\alpha}=T_{\beta}=T_{\gamma}=\{t_1,t_2\}$$

for some $t_1, t_2 \in \mathbb{C}, t_1 \neq t_2$. Then $T_{\delta} = \{t_1, t_2\}, \{t_1, t_1\}$ or $\{t_2, t_2\}$ for any $\delta \in R$.

Definition

We say that a pairs diagram $\{T_{\alpha}\}_{\alpha \in R}$ is of *Class II*, if there exist $\alpha, \beta, \gamma \in R$ satisfying the hypotheses of the theorem, and of *Class I*, if such roots do not exist.

A bi-Lie structure is of *Class I* or *II* correspondingly to the class of diagram.

Let R be a reduced irreducible root system and let $\{T_{\alpha}\}_{\alpha \in R}$ be a pairs diagram. Assume that there exist $\alpha, \beta, \gamma \in R$ such that $\alpha + \beta + \gamma = 0$ and

$$T_{\alpha}=T_{\beta}=T_{\gamma}=\{t_1,t_2\}$$

for some $t_1, t_2 \in \mathbb{C}, t_1 \neq t_2$. Then $T_{\delta} = \{t_1, t_2\}, \{t_1, t_1\}$ or $\{t_2, t_2\}$ for any $\delta \in R$.

Definition

We say that a pairs diagram $\{T_{\alpha}\}_{\alpha \in \mathbb{R}}$ is of *Class II*, if there exist $\alpha, \beta, \gamma \in \mathbb{R}$ satisfying the hypotheses of the theorem, and of *Class I*, if such roots do not exist.

A bi-Lie structure is of *Class I* or *II* correspondingly to the class of diagram.

Given an admissible pair $(U, \mathcal{T}), \mathcal{T} := \{T_{\alpha}\}_{\alpha \in R}$, where \mathcal{T} is of Class I,

- there exists a unique operator $W : \mathfrak{g} \to \mathfrak{g}$ such that $W|_{\mathfrak{h}} = U$ and W is a principal leading operator for a bi-Lie structure.
- It is of the form $W|_{\mathfrak{g}_{\alpha}+\mathfrak{a}_{-\alpha}} = [(t_{1,\alpha}+t_{2,\alpha})/2] \mathrm{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}$ and is symmetric iff so is U.
- The central subalgebra *z* consists of *h* and those *g*_α for which *T*_α = {*t_i*, *t_i*} for some time *t_i* and the sum of eigenspaces of *U* corresponding to eigenvalues *t* ≠ *t_i* is orthogonal to the root *α*.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Theorem

Each pairs diagram of Class I induces a specific $\mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$ -grading on the Lie algebra $(\mathfrak{g}, [,])$.

Given an admissible pair $(U, \mathcal{T}), \mathcal{T} := \{T_{\alpha}\}_{\alpha \in R}$, where \mathcal{T} is of Class I,

- there exists a unique operator $W : \mathfrak{g} \to \mathfrak{g}$ such that $W|_{\mathfrak{h}} = U$ and W is a principal leading operator for a bi-Lie structure.
- It is of the form $W|_{\mathfrak{g}_{\alpha}+\mathfrak{a}_{-\alpha}} = [(t_{1,\alpha}+t_{2,\alpha})/2] \mathrm{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}$ and is symmetric iff so is U.
- The central subalgebra *z* consists of *h* and those *g*_α for which *T*_α = {*t_i*, *t_i*} for some time *t_i* and the sum of eigenspaces of *U* corresponding to eigenvalues *t* ≠ *t_i* is orthogonal to the root *α*.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Theorem

Each pairs diagram of Class I induces a specific $\mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$ -grading on the Lie algebra (g,[,]).

Example

Let R be arbitrary, $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ any \mathbb{Z}_2 -grading induced by an *inner* automorphism of order 2 and let $\mathfrak{g}_0 = \mathfrak{g}_0^1 \oplus \mathfrak{g}_0^2$ be a decomposition of \mathfrak{g}_0 to subalgebras. Then $\mathfrak{g}_0^i = \mathfrak{h} \cap \mathfrak{g}_0^i + \sum_{\alpha \in R^i} \mathfrak{g}_{\alpha}$, where $R^i \subset R$ is a closed symmetric root subsystem. Put $T_{\alpha} := \{t_i, t_i\}$ for $\alpha \in R^i, i = 1, 2,$ $T_{\alpha} := \{t_1, t_2\}$ for $\alpha \in R \setminus (R^1 \cup R^2)$ and $U|_{\mathfrak{h} \cap \mathfrak{g}_0^i} = t_i \mathrm{Id}_{\mathfrak{h} \cap \mathfrak{g}_0^i}$ (GS1 with \mathbb{Z}_2 -grading related to an *inner* involutive automorphism).

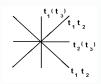
		$t_1 t_2$		
	$t_1 t_2$		$t_1 t_2$	
$t_1 t_1$		$t_1 t_2$		$t_2 t_2$

Example

$$R = \mathfrak{d}_n, \text{ roots } \pm \epsilon_i \pm \epsilon_j (1 \le i < j \le n), U \epsilon_i = t_i \epsilon_i, T_{\pm \epsilon_i \pm \epsilon_j} := \{t_i, t_j\}$$
(KP1, $A = \text{diag}(t_1, t_1, \dots, t_n, t_n)$).

Example

 $\begin{aligned} R &= \mathfrak{b}_{n}, \text{ roots} \\ &\pm \epsilon_{i}(1 \leq i \leq n), \pm \epsilon_{i} \pm \epsilon_{j}(1 \leq i < j \leq n) \\ &\downarrow e_{i} = t_{i}\epsilon_{i}, T_{\pm \epsilon_{i} \pm \epsilon_{j}} := \\ &\{t_{i}, t_{j}\}, T_{\pm \epsilon_{i}} := \{t_{i}, (t_{n+1})\} (KP1, A = \text{diag}(t_{1}, t_{1}, \dots, t_{n}, t_{n+1})). \\ &R = \mathfrak{c}_{n}, \text{ roots} \\ &\pm 2\epsilon_{i}(1 \leq i \leq n), \pm \epsilon_{i} \pm \epsilon_{j}(1 \leq i < j \leq n) \\ &\downarrow e_{i} = t_{i}\epsilon_{i}, T_{\pm \epsilon_{i} \pm \epsilon_{j}} := \\ &\{t_{i}, t_{j}\}, T_{\pm 2\epsilon_{i}} := \{t_{i}, t_{i}\} \\ &(KP2, A = \text{diag}(t_{1}, t_{1}, \dots, t_{n}, t_{n})). \end{aligned}$



Example

$$R = \mathfrak{d}_n, \text{ roots } \pm \epsilon_i \pm \epsilon_j (1 \le i < j \le n), U \epsilon_i = t_i \epsilon_i, T_{\pm \epsilon_i \pm \epsilon_j} := \{t_i, t_j\}$$
(KP1, $A = \text{diag}(t_1, t_1, \dots, t_n, t_n)$).

Example

$$R = \mathfrak{b}_{n}, \text{ roots}$$

$$\pm \epsilon_{i}(1 \leq i \leq n), \pm \epsilon_{i} \pm \epsilon_{j}(1 \leq i < j \leq n)$$

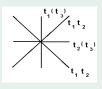
$$D(\epsilon_{i} = t_{i}\epsilon_{i}, T_{\pm\epsilon_{i}\pm\epsilon_{j}} := \{t_{i}, (t_{n+1})\} (KP1, A = \operatorname{diag}(t_{1}, t_{1}, \dots, t_{n}, t_{n+1})).$$

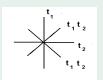
$$R = \mathfrak{c}_{n}, \text{ roots}$$

$$\pm 2\epsilon_{i}(1 \leq i \leq n), \pm \epsilon_{i} \pm \epsilon_{j}(1 \leq i < j \leq n)$$

$$U(\epsilon_{i} = t_{i}\epsilon_{i}, T_{\pm\epsilon_{i}\pm\epsilon_{j}} := \{t_{i}, t_{j}\}, T_{\pm 2\epsilon_{i}} := \{t_{i}, t_{i}\}$$

$$(KP2, A = \operatorname{diag}(t_{1}, t_{1}, \dots, t_{n}, t_{n})).$$





 $R = \mathfrak{a}_n$, root basis $\alpha_1 = \epsilon_1 - \epsilon_2, \alpha_2 = \epsilon_2 - \epsilon_3, \dots, \alpha_n = \epsilon_n - \epsilon_{n+1}$.

a) Put
$$w_n := a\alpha_n, w_{n-1} := w_n + \alpha_{n-1}, \dots, w_1 := w_2 + \alpha_1, t_1 t_3$$

where $a \neq 0, 1, U(w_i) := t_i w_i, t_1 t_3 t_2 t_3$
 $T_{\pm(\epsilon_i - \epsilon_j)} := \{t_i t_j\}, \text{ if } i < j < n+1 t_1 t_2 t_2 t_3 t_3 t_3$
and $T_{\pm(\epsilon_i - \epsilon_{n+1})} = \{t_i t_n\}$
(new).

b) Put a = 1 and $t_1(t_4)$ $T_{\pm(\epsilon_i - \epsilon_{n+1})} = \{t_i(t_{n+1})\}$ t_1t_3 $t_2(t_4)$ (new, corresponds to $WX = (1/2)(L_A + R_A)X - \text{Tr}((1/2)(L_A + R_A)X)B$, where $X \in \mathfrak{sl}(n+1), A = \text{diag}(t_1, t_2, \dots, t_{n+1}), B = \text{diag}(0, 0, \dots, 0, 1)).$

Conjecture

Any bi-Lie structure of Class I is obtained either from one of the admissible pairs listed or by a reduction (by means of identifying some of the parameters t_1, \ldots, t_n).

 $R = \mathfrak{a}_n$, root basis $\alpha_1 = \epsilon_1 - \epsilon_2, \alpha_2 = \epsilon_2 - \epsilon_3, \dots, \alpha_n = \epsilon_n - \epsilon_{n+1}$.

a) Put
$$w_n := a\alpha_n, w_{n-1} := w_n + \alpha_{n-1}, \dots, w_1 := w_2 + \alpha_1, t_1 t_3$$

where $a \neq 0, 1, U(w_i) := t_i w_i, t_1 t_3 t_2 t_3$
 $T_{\pm(\epsilon_i - \epsilon_j)} := \{t_i t_j\}, \text{ if } i < j < n+1 t_1 t_2 t_2 t_3 t_3 t_3$
and $T_{\pm(\epsilon_i - \epsilon_{n+1})} = \{t_i t_n\}$
(new).

b) Put a = 1 and $t_1(t_4)$ $T_{\pm(\epsilon_i - \epsilon_{n+1})} = \{t_i(t_{n+1})\}$ t_1t_2 t_2t_3 $t_3(t_4)$ (new, corresponds to $WX = (1/2)(L_A + R_A)X - \text{Tr}((1/2)(L_A + R_A)X)B$, where $X \in \mathfrak{sl}(n+1), A = \text{diag}(t_1, t_2, \dots, t_{n+1}), B = \text{diag}(0, 0, \dots, 0, 1)).$

Conjecture

Any bi-Lie structure of Class I is obtained either from one of the admissible pairs listed or by a reduction (by means of identifying some of the parameters t_1, \ldots, t_n).

 $R = \mathfrak{a}_n$, root basis $\alpha_1 = \epsilon_1 - \epsilon_2, \alpha_2 = \epsilon_2 - \epsilon_3, \dots, \alpha_n = \epsilon_n - \epsilon_{n+1}$.

a) Put
$$w_n := a\alpha_n, w_{n-1} := w_n + \alpha_{n-1}, \dots, w_1 := w_2 + \alpha_1, t_1 t_3$$

where $a \neq 0, 1, U(w_i) := t_i w_i, t_1 t_3 t_2 t_3$
 $T_{\pm(\epsilon_i - \epsilon_j)} := \{t_i t_j\}, \text{ if } i < j < n+1 t_1 t_2 t_2 t_3 t_3 t_3$
and $T_{\pm(\epsilon_i - \epsilon_{n+1})} = \{t_i t_n\}$
(new).

b) Put a = 1 and $t_1(t_4)$ $T_{\pm(\epsilon_i - \epsilon_{n+1})} = \{t_i(t_{n+1})\}$ t_1t_3 $t_2(t_4)$ (new, corresponds to $WX = (1/2)(L_A + R_A)X - \text{Tr}((1/2)(L_A + R_A)X)B$, where $X \in \mathfrak{sl}(n+1), A = \text{diag}(t_1, t_2, \dots, t_{n+1}), B = \text{diag}(0, 0, \dots, 0, 1)).$

Conjecture

Any bi-Lie structure of Class I is obtained either from one of the admissible pairs listed or by a reduction (by means of identifying some of the parameters t_1, \ldots, t_n).

Bi-Lie structures of Class II

Theorem

Given an admissible pair $(U, \mathcal{T}), \mathcal{T} := \{T_{\alpha}\}_{\alpha \in R}$, where \mathcal{T} is of Class II,

			$t_1 t_2$		
eg.		$t_1 t_2$		$t_1 t_2$	
	$t_1 t_1$		$t_1 t_2$		$t_1 t_2$,

assume that $W:\mathfrak{g}\to\mathfrak{g}$ is an operator such that $W|_\mathfrak{h}=U$ and

• Its symmetric part on $\mathfrak{g}_{\alpha} + \mathfrak{g}_{-\alpha}$ is of the form $W|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}} = [(t_{1,\alpha}+t_{2,\alpha})/2] \mathrm{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}$ (here $\{t_{1,\alpha}, t_{2,\alpha}\} = \{t_1, t_2\}, \{t_1, t_1\}$ or $\{t_2, t_2\}$).

• Its antisymmetric part satisfies the $\ensuremath{"(t_1-t_2)/2\mbox{-triangle rule"}}.$ Then

- W is a leading operator for a bi-Lie structure of Class II.
- The central subalgebra *z* consists of *h* and those g_α for which *T_α* = {*t_i*, *t_i*} for some time *t_i* and the sum of eigenspaces of *U* corresponding to eigenvalues *t* ≠ *t_i* is orthogonal to the root *α*.

Bi-Lie structures of Class II

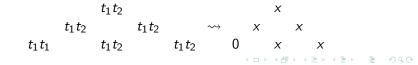
x-triangle rule

Let
$$\alpha, \beta, \gamma \in R$$
 be such that $\alpha + \beta + \gamma = 0$.
1 if
 $T_{\alpha} = \{t_1, t_1\}, T_{\beta} = \{t_1, t_2\}, T_{\gamma} = \{t_2, t_1\}$
then
 $\kappa_{\alpha} + \kappa_{\beta} + \kappa_{\gamma} = 0$.
2 if

$$T_{\alpha}=T_{\beta}=T_{\gamma}=\{t_1,t_2\},t_1\neq t_2,$$

then

$$\kappa_{\alpha} + \kappa_{\beta} + \kappa_{\gamma} = \pm x.$$



Example 1

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_n -grading on \mathfrak{g} related to an *inner* automorphism of *n*-th order, n > 2, and $W|_{\mathfrak{g}_i} = i \mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ (GS1 with *inner* automorphism of *n*-th order, n > 2).

Example 2

Let $\mathfrak{g} = \tilde{\mathfrak{g}}_0 \oplus \tilde{\mathfrak{g}}_1$, where $\tilde{\mathfrak{g}}_0$ is a parabolic subalgebra and $\tilde{\mathfrak{g}}_1$ its "complement", $W|_{\tilde{\mathfrak{g}}_i} = \omega_i \mathrm{Id}_{\tilde{\mathfrak{g}}_i}$, ω_i arbitrary (P).

Theorem

Any Example 2 is isomorphic to one of the Examples 1 (for which \mathfrak{g}_0 is a Levi subalgebra)

Example 1

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_n -grading on \mathfrak{g} related to an *inner* automorphism of *n*-th order, n > 2, and $W|_{\mathfrak{g}_i} = i \mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ (GS1 with *inner* automorphism of *n*-th order, n > 2).

Example 2

Let $\mathfrak{g} = \tilde{\mathfrak{g}}_0 \oplus \tilde{\mathfrak{g}}_1$, where $\tilde{\mathfrak{g}}_0$ is a parabolic subalgebra and $\tilde{\mathfrak{g}}_1$ its "complement", $W|_{\tilde{\mathfrak{g}}_i} = \omega_i \mathrm{Id}_{\tilde{\mathfrak{g}}_i}$, ω_i arbitrary (P).

Theorem

Any Example 2 is isomorphic to one of the Examples 1 (for which \mathfrak{g}_0 is a Levi subalgebra)

Example 1

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_n -grading on \mathfrak{g} related to an *inner* automorphism of *n*-th order, n > 2, and $W|_{\mathfrak{g}_i} = i \mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ (GS1 with *inner* automorphism of *n*-th order, n > 2).

Example 2

Let $\mathfrak{g} = \tilde{\mathfrak{g}}_0 \oplus \tilde{\mathfrak{g}}_1$, where $\tilde{\mathfrak{g}}_0$ is a parabolic subalgebra and $\tilde{\mathfrak{g}}_1$ its "complement", $W|_{\tilde{\mathfrak{g}}_i} = \omega_i \mathrm{Id}_{\tilde{\mathfrak{g}}_i}$, ω_i arbitrary (P).

Theorem

Any Example 2 is isomorphic to one of the Examples 1 (for which \mathfrak{g}_0 is a Levi subalgebra)

Regular reductive subalgebras

A reductive subalgebra $\mathfrak{g}_0 \subset \mathfrak{g}$ is *regular* if it contains some Cartan subalgebra \mathfrak{h} . There is a one-to-one correspondence {Regular reductive subalgebras} \leftrightarrow {closed symmetric subsytems $R_0 \subset R$ }

Classification of regular reductive subalgebras

$$L := \operatorname{Span}_{\mathbb{Z}} R, L_0 := \operatorname{Span}_{\mathbb{Z}} R_0, \Gamma(\mathfrak{g}_0) := L/L_0$$

- Γ(g₀) is free Levi subalgebra;
- Output: The torsion component TorΓ(g₀) is cyclic;
- Tor $\Gamma(\mathfrak{g}_0)$ is not cyclic.

New example of bi-Lie structure of Class II

 $\mathfrak{g} = \mathfrak{e}_7, \Gamma(\mathfrak{g}_0) = \mathbb{Z}_3 \times \mathbb{Z}_3$ corresponds to case 3, \mathfrak{g}_0 is not the fixed point subalgebra of an inner automorphism of finite order (the last corresponds to cases 1 or 2)

Regular reductive subalgebras

A reductive subalgebra $\mathfrak{g}_0 \subset \mathfrak{g}$ is *regular* if it contains some Cartan subalgebra \mathfrak{h} . There is a one-to-one correspondence {Regular reductive subalgebras} \leftrightarrow {closed symmetric subsystems $R_0 \subset R$ }

Classification of regular reductive subalgebras

$$L := \operatorname{Span}_{\mathbb{Z}} R, L_0 := \operatorname{Span}_{\mathbb{Z}} R_0, \Gamma(\mathfrak{g}_0) := L/L_0$$

- $\Gamma(\mathfrak{g}_0)$ is free Levi subalgebra;
- Output: The torsion component TorΓ(g₀) is cyclic;
- Tor $\Gamma(\mathfrak{g}_0)$ is not cyclic.

New example of bi-Lie structure of Class II

 $\mathfrak{g} = \mathfrak{e}_7, \Gamma(\mathfrak{g}_0) = \mathbb{Z}_3 \times \mathbb{Z}_3$ corresponds to case 3, \mathfrak{g}_0 is not the fixed point subalgebra of an inner automorphism of finite order (the last corresponds to cases 1 or 2)

Regular reductive subalgebras

A reductive subalgebra $\mathfrak{g}_0 \subset \mathfrak{g}$ is *regular* if it contains some Cartan subalgebra \mathfrak{h} . There is a one-to-one correspondence {Regular reductive subalgebras} \leftrightarrow {closed symmetric subsystems $R_0 \subset R$ }

Classification of regular reductive subalgebras

$$L := \operatorname{Span}_{\mathbb{Z}} R, L_0 := \operatorname{Span}_{\mathbb{Z}} R_0, \Gamma(\mathfrak{g}_0) := L/L_0$$

- $\Gamma(\mathfrak{g}_0)$ is free Levi subalgebra;
- Output: The torsion component TorΓ(g₀) is cyclic;
- Tor $\Gamma(\mathfrak{g}_0)$ is not cyclic.

New example of bi-Lie structure of Class II

 $\mathfrak{g} = \mathfrak{e}_7, \Gamma(\mathfrak{g}_0) = \mathbb{Z}_3 \times \mathbb{Z}_3$ corresponds to case 3, \mathfrak{g}_0 is not the fixed point subalgebra of an inner automorphism of finite order (the last corresponds to cases 1 or 2)

http://arxiv.org/abs/1208.1642

