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Main definition

Definition

A bi-Lie structure is a triple (g, [, ], [, ]′), where g is a vector space and
[, ], [, ]′ are two Lie brackets on g which are compatible, i.e. so that
[, ] + [, ]′ is a Lie bracket.

Example

Let g = gl(n,K), A ∈ g be a fixed matrix. Put

[x ,A y ] = xAy − yAx .

Then (g, [, ], [,A ]) is a bi-Lie structure, ([, ] the standard commutator).

Main motivating example

Let g = so(n,K), A ∈ Symm(n,K), a fixed symmetric matrix. Then
(g, [, ], [,A ]) is a bi-Lie structure.
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Motivation I: bihamiltonian structures

Definition

A bihamiltonian structure on a manifold M is a pair η1, η2 ∈ Γ(
∧2 TM)

such that η1, η2, η1 + η2 are Poisson.

Hierarchy of mechanisms (by complexity of structures):

constant+constant (rather not interesting)

constant+linear (proved to be powerful, eg. ”argument translation”)

linear+linear (topic of present talk)

linear+quadratic (eg. argument translation of quadratic bracket
towards ”vanishing direction”)

etc.
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Motivation I: bihamiltonian structures

Semisimple case

Applications of the so(n,R) bi-Lie structure:

Manakov top (n-dimensional free rigid body), here A is diagonal, the
”inertia tensor” of the body (Bolsinov 1992)

Klebsh–Perelomov case (Bolsinov 1992)

Another bi-Lie structure on so(n,R)× so(n,R)

Generalized Steklov–Lyapunov systems (Bolsinov–Fedorov 1992)

Nonsemisimple case

Works of Golubchik, Odesskii, Sokolov ∼ 2004–2006

Matrix integrable ODE’s
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Motivation II: classical R-matrix formalism

Quasigraded Lie algebras

A Lie algebra (g̃, [, ]) with a decomposition g̃ =
⊕

n∈Z gn is quasigraded of
degree 1 if [gi , gj ] ⊂ gi+j ⊕ gi+j+1

Quasigraded Lie algebras → standard classical R-matrix

One checks that g+ :=
⊕

n≥0 gn, g− :=
⊕

n<0 gn are subalgebras.

Bi-Lie structures → quasigraded Lie algebras

Let (g, [, ]0, [, ]1) be a bi-Lie structure, g̃ := g[λ, 1/λ]. Put [, ] = [, ]0 +λ[, ]1
and extend this bracket to g̃. Then g̃ is quasigraded of degree 1.
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Motivation II: classical R-matrix formalism

Applications

Landau-Livshits PDE (the so(n,R) bi-Lie structure, n = 3, Holod
1987)

Other finite- and infinite-dimensional systems (Skrypnyk,
Golubchik–Sokolov, Yanovski)



Known classification results: the Kantor–Persits theorem

Useful notation

Let g be a Lie algebra and N : g→ g a linear operator. Put

[x , y ]N := [Nx , y ] + [x ,Ny ]− N[x , y ].

Definition

Let {[, ]v}v∈V be a n-dimensional vector space of Lie structures on a
vector space g. It is called irreducible if the Lie algebras (g, [, ]v ) do not
have common nontrivial ideals and closed if

∀x ∈ g ∀v ,w ∈ V ∃u ∈ V : [, ]vad wx := [, ]u, ad wx(y) = [x , y ]w .
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Known classification results: the Kantor–Persits theorem

Kantor–Persits 1988 (announced only)

The list of irreducible closed vector spaces of Lie structures:

g = so(n,K), {[,A ]}A∈Symm(n,K)

g = sp(n,K), {[,A ]}A∈m(n,K)

several nonsemisimple cases

here
[X ,A Y ] := XAY − YAX ,

sp(n,K) = {X ∈ gl(2n,K) | XJ + JXT = 0} the symplectic Lie algebra,
m(n,K) := {X ∈ gl(2n,K) | XJ − JXT = 0} its orthogonal complement in
gl(2n,K) w.r.t. ”trace form”



Known classification results: the Odesskii–Sokolov theorem

Odesskii–Sokolov 2006

Classification of ”bi-associative structures” (·, ◦) on gl(n,K) =⇒ Examples
of bi-Lie structures on gl(n,K) (which do not restrict to sl(n,K))



Semisimple bi-Lie structures and their examples

Definition

Say that a bi-Lie structure B := (g, [, ], [, ]′) is semisimple if (g, [, ]) is
semisimple.

Known examples of semisimple bi-Lie structures

KP1 (so(n,C), [, ], [,A ]) (Kantor–Persits 1988)

KP2 (sp(n,C), [, ], [,A ]) (Kantor–Persits 1988)

GS1 Let (g, [, ]) be semisimple. There exists a bi-Lie structure related to
any Zn-grading g = g0 ⊕ · · · ⊕ gn−1 on (g, [, ]) and to decomposition
of the subalgebra g0 = g1

0 ⊕ g2
0 to two subalgebras

(Golubchik–Sokolov 2002)

P Let (g, [, ]) be semisimple. There exists a bi-Lie structure related to
any parabolic subalgebra g0 ⊂ g (P 2006)

GS2 Examples on sl(3,C), so(4,C) related to Z2 × Z2-gradings
(Golubchik–Sokolov 2002)



Semisimple bi-Lie structures and operators

Obvious or Easy:

Let (g, [, ]) be a Lie algebra, [, ]′ a bilinear bracket.

[, ]′ ”compatible” with [, ] ⇐⇒ [, ]′ is a 2-cocycle on (g, [, ])

In particular, if (g, [, ], [, ]′) is a semisimple bi-Lie str., then
[, ]′ = [, ]W = [W ·, ·] + [·,W ·]−W [·, ·] for some W : g→ g

(Magri–Kosmann-Schwarzbach) [, ]N is a Lie bracket for some
N : g→ g ⇐⇒ TN(·, ·) := [N·,N·]− N[·, ·]N is a 2-cocycle on (g, [, ])

In particular, (g, [, ], [, ]′) is a semisimple bi-Lie str. ⇐⇒ [, ]′ = [, ]W
and TW (·, ·) = [·, ·]P , where P : g→ g is another linear operator.
Moreover, the operators W ,P are defined up to adding of inner
differentiations ad x.

TN(X ,Y ) = [NX ,NY ]− N([NX ,Y ] + [X ,NY ]− N[X ,Y ])



Semisimple bi-Lie structures: examples of leading operators

Definition

Given a semisimple bi-Lie structure B call W such that [, ]′ = [, ]W a
leading operator for B and P a primitive for W . They satisfy the main
identity (MI)

TW (·, ·) = [·, ·]P

Example

Let g = g0 ⊕ · · · ⊕ gn−1 be a Z/nZ-grading on g. Put
W |gi = iIdgi , i = 0, . . . , n − 1 and P|gi = 1

2 i(n − i)Idgi . One checks MI
directly.

Example

Let g = g1 ⊕ g2 (sum of subalgebras). Put W |gi = ωi Idgi , i = 1, 2, where
ω1,2 are any scalars. Then TW = 0 (so put P = 0 in the MI). Important
example: g simple, g1 a parabolic subalgebra and g2 its ”complement”.
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Principal leading operator

Definition

Let g be a semisimple Lie algebra. Then there exists a direct
decomposition End(g) = ad g⊕ C , where C = (ad g)⊥ is the direct
complement to ad g ⊂ End(g) w.r.t. the trace form. An operator
W ∈ End(g) is called principal if W ∈ C .

Theorem
1 There exists a unique principal operator W with the property

[, ]′ = [, ]W . Call it the principal (leading) operator of a bi-Lie
structure (g, [, ], [, ]′).

2 If W is the principal operator, there exists a unique operator P
primitive for W which is symmetric w.r.t. the trace form on End(g).

Example

For so(n,K) bi-Lie structure we have W = (1/2)(LA + RA) (operators
of left and right multiplication by A).
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Significance of the principal leading operator

Definition

We say that bi-Lie structures (g, [, ], [, ]′) and (g, [, ], [, ]′′) are strongly
isomorphic (isomorphic) if there exists an automorphism of the Lie
algebra (g, [, ]) sending the bracket [, ]′ to [, ]′′ (to a linear combination
α1[, ] + α2[, ]′′).

Theorem

Let (g, [, ], [, ]′) and (g, [, ], [, ]′′) be two semisimple bi-Lie structures and let
W ′,W ′′ be the corresponding principal operators. Then the bi-Lie
structures are strongly isomorphic if and only if there exists an
automorphism φ of the Lie algebra (g, [, ]) with the property
φ ◦W ′ = W ′′ ◦ φ.

In particular, classification of semisimple bi-Lie structures up to
isomorphism ⇐⇒ classification of principal operators satisfyting MI up to
action of automorphisms, rescaling, and adding scalar operators
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The pencil of Lie algebras and the times

Switch to K = C

Bi-Lie structure (g, [, ], [, ]′) =⇒ Pencil of Lie brackets
(g, [, ]t), [, ]t := [, ]′ − t[, ], t ∈ C

Theorem

Let (g, [, ], [, ]′) be a semisimple bi-Lie structure, W its principal operator,
P its symmetric primitive and let B(, ) be the Killing form of (g, [, ]). Then
the Killing form Bt of the Lie algebra (g, [, ]t) is given by the formula

Bt(x , y) = B((W − tI )x , (W − tI )y)− 2B(Px , y), x , y ∈ g,

In particular, ker Bt 6= {0} ⇐⇒ det(W ∗W − 2P − t(W + W ∗) + t2I ) = 0.

Definition

The elements of the finite set T := {t ∈ C | ker Bt 6= {0}} are called the
times of the bi-Lie structure.
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The central subalgebra

In particular, if t ∈ T , the center zt of the Lie algebra (g, [, ]t) can be
nontrivial. Put Θ := {t ∈ T | zt 6= {0}}.

Theorem

For x ∈ g, x 6= 0, the following conditions are equivalent:

1 x belongs to the center zθ of the bracket [, ]θ := [, ]′ − θ[, ] = [, ]W θ ,
here W θ := W − θI ;

2 x is the eigenvector of the principal operator W corresponding to the
eigenvalue θ and [ad x ,W ] = 0.

Theorem

1 The subset zθ is a subalgebra in (g, [, ]) for any θ ∈ Θ;

2 zθi ∩ zθj = {0} if θi 6= θj ;

3 [zθi , zθj ] = 0 if θi 6= θj ; in particular, the set z := zθ1 ⊕ · · · ⊕ zθm is a
subalgebra in (g, [, ]) which is a direct sum of its ideals zθi . Call z the
central subalgebra of (g, [, ], [, ]′). Moreover, z ⊂ ker P.
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Examples of the central subalgebras

(so(6,C), [, ], [,A ])

A =



a 0 0 0 0 0
0 a 0 0 0 0
0 0 a 0 0 0
0 0 0 b 0 0
0 0 0 0 b 0
0 0 0 0 0 c

 , z =



∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
0 0 0 ∗ ∗ 0
0 0 0 ∗ ∗ 0
0 0 0 0 0 0


B

i-Lie ! Z/nZ-grading g = g0 ⊕ · · · ⊕ gn−1=⇒ z = g0.
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Gradings and Main assumption

Definition

Let g =
⊕

i∈Γ gi be a grading of a Lie algebra (g, [, ]), i.e. [gi , gj ] ⊂ gi+j

for any i , j ∈ Γ, Γ an abelian group. We say that a linear operator
W : g→ g preserves the grading if W gi ⊂ gi for any i ∈ Γ.

Theorem

Let (g, [, ], [, ]′) be a semisimple bi-Lie structure and let g =
⊕

i∈Γ gi be a
grading. Then, if the principal operator W : g→ g preserves the grading,
so does its symmetric primitive P.

Main assumption: z ⊃ h

The central subalgebra z contains some Cartan subalgebra h ⊂ g
(w.r.t.[, ]). one slide back
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Gradings and Main assumption

Theorem

The main assumption z ⊃ h is equivalent to the following two conditions

The principal operator W ∈ End(g) preserves the grading

g = h +
∑
α∈R

gα

related to the root decomposition with respect to the Cartan
subalgebra h. In other words for some ωα ∈ C

W |gα = ωαIdgα ,W h ⊂ h.

The operator W |h is diagonalizable.



Consequences of the Main assumption

Theorem

Recall W |gα = ωαIdgα ,W h ⊂ h,P|gα = παIdgα , πα = π−α, put P|h = 0.

Then for any α ∈ R

there exist two times t1,α, t2,α (possibly equal) such that
gα ⊂ ker Bt1,α ∩ ker Bt2,α . They are the solutions of the quadratic
equation (t − ωα)(t − ω−α)− 2πα = 0. Moreover, if
Tα := {t1,α, t2,α}, then Tα = T−α.

σα = (1/2)(t1,α + t2,α), κα = ±
√

((t1,α − t2,α)/2)2 − 2πα, where
σα := (1/2)(ωα + ω−α), κα := (1/2)(ωα − ω−α).

(W − t1,αI )(W − t2,αI )Hα = 0, here Hα ∈ h, α ∈ R, is such that
B(Hα,H) = α(H) for any H ∈ h. Consequently, Hα is either an
eigenvector of W corresponding to the eigenvalue t1,α, or an
eigenvector of W corresponding to the eigenvalue t2,α, or a sum of
such eigenvectors. Hence W |h is admissible in the following sense:



Admissible operators

Definition

Let V be a vector space over R and let R ⊂ V be a reduced root
system in V . A diagonalizable linear operator U : V C → V C will be
called R-admissible if for any α ∈ R ⊂ V C

1 either there exist two eigenvectors w1,α,w2,α ∈ V C corresponding
to different eigenvalues t1,α, t2,α of the operator U such that

α = w1,α + w2,α;

2 or α is an eigenvector of U corresponding to the eigenvalue tα.

Put Uα := {t1,α, t2,α} or Uα := {tα}.



Examples of admissible operators

Any diagonalizable operator with two eigenvalues is admissible.

R = dn, roots ±εi ± εj(1 ≤ i < j ≤ n), here εi elements of the
standard basis in Rn. Put Uεi = tiεi (KP1 with
A = diag(t1, t1, . . . , tn, tn)).

R = bn, roots ±εi (1 ≤ i ≤ n),±εi ± εj(1 ≤ i < j ≤ n). Again
Uεi = tiεi (KP1 with A = diag(t1, t1, . . . , tn, tn, tn+1)).

R = cn, roots ±2εi (1 ≤ i ≤ n),±εi ± εj(1 ≤ i < j ≤ n). Again
Uεi = tiεi (KP2 with A = diag(t1, t1, . . . , tn, tn)).



Examples of admissible operators

Example

R = an, root basis α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn = εn − εn+1. Put

wn := aαn

wn−1 := wn + αn−1

wn−2 := wn−1 + αn−2
...

w1 := w2 + α1,

where a 6= 0, 1 is a complex parameter, and U(wi ) := tiwi . Then
αn = (1/a)wn, αn−1 = wn−1−wn, αn−2 = wn−2−wn−1, . . . , α1 = w1−w2.

t1t3

t1t3 t2t3

t1t2 t2t3 t3



Examples of admissible operators

Example

R = an. Put a = 1 in previous example.

t1

t1t3 t2

t1t2 t2t3 t3



Virtual times

Definition

If α ∈ R is an eigenvector for W |h corresponding to eigenvalue t1,α and
Tα = {t1,α, t2,α}, t2,α 6= t1,α, we call t2,α a virtual time

Example: KP1 on so(5) with A = diag(t1, t1, t2, t2, t3)


0 2t1 t1 + t2 t1 + t2 t1 + t3

2t1 0 t1 + t2 t1 + t2 t1 + t3

t1 + t2 t1 + t2 0 2t2 t2 + t3

t1 + t2 t1 + t2 2t2 0 t2 + t3

t1 + t3 t1 + t3 t2 + t3 t2 + t3 0


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”Times selection rules” and antisymmetric part of W

Theorem

Let α, β, γ ∈ R be such that α + β + γ = 0. Then only the following
possibilities can occur:

1 either there exist t1, t2, t3 ∈ C such that

Tα = {t1, t2},Tβ = {t2, t3},Tγ = {t3, t1};

2 or there exist t1, t2 ∈ C such that

Tα = Tβ = Tγ = {t1, t2}, t1 6= t2,

Moreover, in Case 1 the following equality holds:

κα + κβ + κγ = 0

and in Case 2:
κα + κβ + κγ = ±(t1 − t2)/2.



Pairs diagrams

Definition

Let R be a reduced root system. A collection {Tα}α∈R of unordered
pairs Tα = {t1,α, t2,α} of complex numbers is called a pairs diagram if

1 Tα = T−α for any α ∈ R;

2 for any α, β, γ ∈ R such that α + β + γ = 0 the pairs Tα,Tβ,Tγ
obey ”the times selection rules”.

A pairs diagram {Tα}α∈R is called admissible if there exists an
admissible operator U : V C → V C such that Uα ⊂ Tα for any α ∈ R;
the pair (U, {Tα}α∈R) will be called admissible too.

Examples:
t1t3

t1t2 t2t3
,

t1(t4)
t1t3 t2(t4)

t1t2 t2t3 t3(t4)
,

t1t3

t1t3 t2t3

t1t2 t2t3 t3t3

,
t1t2

t1t2 t1t2

t1t1 t1t2 t1t2

.
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Two classes of pairs diagrams

Theorem

Let R be a reduced irreducible root system and let {Tα}α∈R be a pairs
diagram. Assume that there exist α, β, γ ∈ R such that α+ β + γ = 0 and

Tα = Tβ = Tγ = {t1, t2}

for some t1, t2 ∈ C, t1 6= t2. Then Tδ = {t1, t2}, {t1, t1} or {t2, t2} for any
δ ∈ R.

Definition

We say that a pairs diagram {Tα}α∈R is of Class II, if there exist
α, β, γ ∈ R satisfying the hypotheses of the theorem, and of Class I, if
such roots do not exist.
A bi-Lie structure is of Class I or II correspondingly to the class of
diagram.
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Bi-Lie structures of Class I

Theorem

Given an admissible pair (U, T ), T := {Tα}α∈R , where T is of Class I,

there exists a unique operator W : g→ g such that W |h = U and W
is a principal leading operator for a bi-Lie structure.

It is of the form W |gα+a−α = [(t1,α + t2,α)/2]Idgα+g−α and is
symmetric iff so is U.

The central subalgebra z consists of h and those gα for which
Tα = {ti , ti} for some time ti and the sum of eigenspaces of U
corresponding to eigenvalues t 6= ti is orthogonal to the root α.

Theorem

Each pairs diagram of Class I induces a specific
Z/2Z× · · · × Z/2Z-grading on the Lie algebra (g, [, ]).
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Tα = {ti , ti} for some time ti and the sum of eigenspaces of U
corresponding to eigenvalues t 6= ti is orthogonal to the root α.

Theorem

Each pairs diagram of Class I induces a specific
Z/2Z× · · · × Z/2Z-grading on the Lie algebra (g, [, ]).



Examples of admissible pairs of Class I

Example

Let R be arbitrary, g = g0 ⊕ g1 any Z2-grading induced by an inner
automorphism of order 2 and let g0 = g1

0 ⊕ g2
0 be a decomposition of g0

to subalgebras. Then gi0 = h ∩ gi0 +
∑

α∈R i gα, where R i ⊂ R is a closed
symmetric root subsystem. Put Tα := {ti , ti} for α ∈ R i , i = 1, 2,
Tα := {t1, t2} for α ∈ R \ (R1 ∪ R2) and U|h∩gi0 = ti Idh∩gi0

(GS1 with

Z2-grading related to an inner involutive automorphism).

t1t2

t1t2 t1t2

t1t1 t1t2 t2t2



Examples of admissible pairs of Class I

Example

R = dn, roots ±εi ± εj(1 ≤ i < j ≤ n),Uεi = tiεi ,T±εi±εj := {ti , tj}
(KP1, A = diag(t1, t1, . . . , tn, tn)).

Example

R = bn, roots
±εi (1 ≤ i ≤ n),±εi ± εj(1 ≤ i < j ≤
n)Uεi = tiεi ,T±εi±εj :=
{ti , tj},T±εi := {ti , (tn+1)} (KP1,
A = diag(t1, t1, . . . , tn, tn, tn+1)).
R = cn, roots
±2εi (1 ≤ i ≤ n),±εi ± εj(1 ≤ i <
j ≤ n)Uεi = tiεi ,T±εi±εj :=
{ti , tj},T±2εi := {ti , ti}
(KP2,A = diag(t1, t1, . . . , tn, tn)).
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Examples of admissible pairs of Class I

R = an, root basis α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn = εn − εn+1.

a) Put wn := aαn,wn−1 :=
wn + αn−1, . . . ,w1 := w2 + α1,
where a 6= 0, 1, U(wi ) := tiwi ,
T±(εi−εj ) := {ti tj}, if i < j < n + 1
and T±(εi−εn+1) = {ti tn}

t1t3

t1t3 t2t3

t1t2 t2t3 t3t3

(new).

b) Put a = 1 and
T±(εi−εn+1) = {ti (tn+1)}

t1(t4)
t1t3 t2(t4)

t1t2 t2t3 t3(t4)
(new, corresponds to WX = (1/2)(LA + RA)X − Tr((1/2)(LA + RA)X )B,
where X ∈ sl(n + 1),A = diag(t1, t2, . . . , tn+1),B = diag(0, 0, . . . , 0, 1)).

Conjecture

Any bi-Lie structure of Class I is obtained either from one of the
admissible pairs listed or by a reduction (by means of identifying some of
the parameters t1, . . . , tn).
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Bi-Lie structures of Class II

Theorem

Given an admissible pair (U, T ), T := {Tα}α∈R , where T is of Class II,

eg.
t1t2

t1t2 t1t2

t1t1 t1t2 t1t2,

assume that W : g→ g is an operator such that W |h = U and

Its symmetric part on gα + g−α is of the form
W |gα+g−α = [(t1,α + t2,α)/2]Idgα+g−α (here
{t1,α, t2,α} = {t1, t2}, {t1, t1} or {t2, t2}).

Its antisymmetric part satisfies the ”(t1 − t2)/2-triangle rule”.

Then

W is a leading operator for a bi-Lie structure of Class II.

The central subalgebra z consists of h and those gα for which
Tα = {ti , ti} for some time ti and the sum of eigenspaces of U
corresponding to eigenvalues t 6= ti is orthogonal to the root α.



Bi-Lie structures of Class II

x-triangle rule

Let α, β, γ ∈ R be such that α + β + γ = 0.

1 if
Tα = {t1, t1},Tβ = {t1, t2},Tγ = {t2, t1}

then
κα + κβ + κγ = 0.

2 if
Tα = Tβ = Tγ = {t1, t2}, t1 6= t2,

then
κα + κβ + κγ = ±x .

t1t2

t1t2 t1t2

t1t1 t1t2 t1t2

 
x

x x
0 x x



Examples of bi-Lie structures of Class II

Example 1

Let g = g0 ⊕ · · · ⊕ gn−1 be a Zn-grading on g related to an inner
automorphism of n-th order, n > 2, and W |gi = iIdgi , i = 0, . . . , n − 1
(GS1 with inner automorphism of n-th order, n > 2).

Example 2

Let g = g̃0 ⊕ g̃1, where g̃0 is a parabolic subalgebra and g̃1 its
”complement”, W |g̃i = ωi Idg̃i , ωi arbitrary (P).

Theorem

Any Example 2 is isomorphic to one of the Examples 1 (for which g0 is a
Levi subalgebra)

sl(5) :


∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


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Examples of bi-Lie structures of Class II

Regular reductive subalgebras

A reductive subalgebra g0 ⊂ g is regular if it contains some Cartan
subalgebra h. There is a one-to-one correspondence {Regular reductive
subalgebras} ↔ {closed symmetric subsytems R0 ⊂ R}

Classification of regular reductive subalgebras

L := SpanZ R, L0 := SpanZ R0, Γ(g0) := L/L0

1 Γ(g0) is free - Levi subalgebra;

2 The torsion component TorΓ(g0) is cyclic;

3 TorΓ(g0) is not cyclic.

New example of bi-Lie structure of Class II

g = e7, Γ(g0) = Z3 × Z3 corresponds to case 3, g0 is not the fixed point
subalgebra of an inner automorphism of finite order (the last corresponds
to cases 1 or 2)
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