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Abstract
We present a KAM theorem for presymplectic dynamical systems. The theorem has a “ a posteriori
” format. We show that given a Diophantine frequency ω and a family of presymplectic mappings,
if we find an embedded torus which is approximately invariant with rotation ω such that the torus
and the family of mappings satisfy some explicit non-degeneracy condition, then we can find an
embedded torus and a value of the parameter close to to the original ones so that the torus is invariant
under the map associated to the value of the parameter. Furthermore, we show that the dimension
of the parameter space is reduced if we assume that the systems are exact.

1. Presymplectic Dynamics
Presymplectic structures (constant rank, closed 2-forms) arise naturally in the study of degenerate
Lagrangian and Hamiltonian mechanical systems with constrains, in time dependent Hamiltonian
systems and in control theory.

Given a presymplectic form Ω ∈ Ω2(M), a vector field X ∈ X(M) is said to be a Hamiltonian
vector field associated with a function H ∈ C∞(M) if:

iXΩ = dH.

Due to the degeneracy of Ω, there can be different functions H associated with X , not differing
by a constant. The corresponding flow φtX : M → M is a 1-parameter group of presymplectic
diffeomorphisms: (φtX)∗Ω = Ω. Hence, the dynamics of such systems leave the presymplectic
structure invariant.

EXAMPLE 1.1. Example to keep in mind could be the three dimensional torus endowed with a
presymplectic form Ω = dΨ1 ∧ dΨ2. Clearly, the kernel is given by the level sets of Ψ1,Ψ2.

EXAMPLE 1.2. A more complicated example on T3 is Ω = dΨ1 ∧ γ where γ is a closed but not
exact form. In this case, the kernel can be an irrational foliation.

EXAMPLE 1.3. Another example related to the previous ones is the study of quasi-periodically per-
turbed Hamiltonian systems H(x, ωt). These can be made autonomous by adding an extra variable
θ ∈ Td that satisfies d

dtθ = ω. The phase space is now supplemented by a factor Td. The symplectic
form in the phase space becomes a presymplectic form in the extended phase space having Td in
the kernel.

Remark. The paper [2] shows how the Pontriaguin maximum principle for optimal trajectories can
be formulated using presymplectic systems. If we consider a mechanical system with KAM tori
and subject it to a control indexed by enough parameters, the results in this paper give a condition
which ensures that the one adjust parameters to maintain the quasi-periodic motion. It would be
interesting to study in detail concrete models, specially because the methods we use here, are well
suited for numerical implementations.
Remark. The theory of presymplectic manifolds was developed (e.g. in [5]) to give a geometric
framework to the Dirac theory of constrained systems, [3,4]. There are many physically interesting
examples of constrained systems to which the present theory applies.

2. Main Result
Let Uρ denote the complex strip of width ρ > 0:

Uρ = {θ ∈ Cd+n/Zd+n : |Im(ρ)| ≤ ρ},

DEFINITION 2.4. The space (Pρ, ‖.‖ρ) consists of functions K : Uρ→M which are one periodic
in all their arguments, real analytic on the interior of Uρ and continuous on the closure of Uρ. We
endow this space with the norm

‖K‖ρ := sup
θ∈Uρ
|K(θ)|,

which makes it into a Banach space.

DEFINITION 2.5. Given γ > 0 and σ ≥ d + n, we will denote by D(γ, σ) the set of frequency
vectors ω ∈ Rd+n satisfying the Diophantine condition:

|l · ω −m| ≥ γ|l|−σZ ∀l ∈ Zd+n\{0},m ∈ Z (1)

Following result by Rüssmann ([8]) is a main ingredient:

Our main result can be stated as follows. We consider the presymplectic manifold

M := T ∗Td × Tn, (2)

with an exact presymplectic form Ω of rank 2d, whose kernel coincides with the Tn-direction.

One says thatK : Td+n→M is an invariant torus of a diffeomorphism f : M →M with frequency
ω ∈ Rn+d if:

f (K(θ))−K(θ + ω) = 0, ∀θ ∈ Tn+d.

When the left hand side is non-zero, but small enough (we will assume all the functions can be
extended to Uρ, then we will use the norm ‖.‖ρ to measure the error), one says that f has an
approximate invariant torus K with frequency ω. Our main theorem can be stated in rough terms as
follows:

THEOREM 2.6. Let fλ : M → M , where M is as in (2), be an analytic, non-degenerate in the
sense to be defined later, (2d + n)-parametric family of presymplectic diffeomorphisms such that
f0 has an approximate invariant torus K0, satisfying a non-degeneracy condition, with frequency
ω satisfying a Diophantine condition. Then there exists a diffeomorphism fλ∞ in this family, where
λ∞ is close to 0, which has an invariant torus K∞ with frequency ω and which is close to the initial
torus K0 with respect to norm ‖.‖ρ∞ where 0 < ρ∞ < ρ.

The precise version of theorem can be find at [1].

3. Sketch of proof:

We will use a modified Newton method of the type introduced by Moser in [6, 7, 9]. The procedure
goes as follows. Starting with

G(K0, 0) := f0(K0(θ))−K0(θ + ω) = e0(θ), (3)

we look for an approximate solution for the corresponding linearized equation

DG(K0, 0)|(∆0(θ),ε0) := (4)
∂fλ(K0(θ))

∂λ

∣∣∣∣
λ=0

ε0 + Df0(K0(θ))∆0(θ)−∆0(θ + ω) = −e0(θ).

By an approximate solution we mean up to a quadratic error, i.e., a solution ∆0(θ) such that:

‖DG(K0, 0)|(∆0(θ),ε0) + e0‖ρ0−δ0 ≤ c0γ
−3δ
−(3σ+1)
0 ‖e0‖2ρ0

where δ0, c0 are constants to be determined later.

Having the solution (∆0(θ), ε0) a better approximating torus for the map fλ1, where λ1 = λ0 + ε0,
is defined as

K1(θ) = K0(θ) + ∆0(θ)

and it will be shown that (K1(θ), fλ1) is a non-degenerate pair. Furthermore, setting

e1(θ) := fλ1(K1(θ))−K1(θ)

we find that
‖e1‖ρ0−δ0 ≤ c0γ

−4δ−4σ
0 ‖e0‖2ρ0.

In other words, for the new torus the error has decreased quadratically.

Iterating this procedure, we will see that the sequence

(K0, λ0), (K1, λ1), . . . , (Kn, λn), . . .

of approximate invariant tori for the functions paired with them, obtained by applying the iterative
procedure, converges to a solution (K∞, λ∞). One has to be careful with the domain Uρ which
decreases in each iteration (the reason is because we can bound the correction applied at one step

only in a domain slightly smaller than the domain of the original function, see Proposition (4.7)).
This loss of domain can be arranged in a way that, in the limit, one does not end up with an empty
domain. This choice of decreasing domains so that there is some domain that remains is very
standard in KAM theory.

4. Approximate solution:
The non-degeneracy condition we impose and perseverance of the presymplectic structure will pro-
vide us a matrix valued map, M(θ) such that for two matrices s(θ), A(θ), the equation

Df (K(θ)) ·M(θ))−M(θ + ω) ·

 Id S1(θ) 0
0 Id 0
0 A(θ) In

 = 0. (5)

holds up to an error. Following figure gives a vision in dimension two (symplectic case)

The change of variable ∆0(θ) = M(θ)ξ(θ) will transform (4) to Id S(θ) 0
0 Id 0
0 A(θ) In

 ξ(θ)− ξ(θ + ω) = h(θ), (6)

where h(θ) has terms bounded by quadratic error that we will ignore, since we are looking for an
approximate solution. Then we will solve the transformed equation using following proposition:

PROPOSITION 4.7 (Cohomological Equation). Let ω ∈ D(σ, γ) and assume that h : Td+n →
R2d+n is analytic on Uρ and has zero average, avg(h) :=

∫
Td+n h(θ)dθ = 0. Then for all 0 < δ < ρ

, the difference equation
v(θ)− v(θ + ω) = h(θ) (7)

has a unique zero average solution v : Td+n → R2d+n which is analytic in Uρ−δ. Moreover, this
solution satisfies the following estimate:

‖v‖ρ−δ ≤ c0γ
−1δ−σ‖h‖ρ, (8)

where c0 is a constant depending on n and σ.

Remark. The average of h(θ) in the right hand side of (6) is not zero in general. An other advantage
of the non-degeneracy condition we impose is that we can use parameters to kill the average. As we
mentioned before, this non-degeneracy condition will stay holding all over the iteration procedure.
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