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But what is a Poisson manifold?

Definition

A Poisson structure on a smooth manifold M is given by a smooth
bivector field Π satisfying

[Π,Π] = 0

This defines a Poisson bracket on C∞(M),

{f, g} := Π(df, dg)

And the manifold M is endowed with a smooth foliation (in the Sussmann
sense) whose leaves are symplectic manifolds.

The symplectic foliation is then spanned by the vector fields Π(df, .) with
f ∈ C∞(M).
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Local Structure. Weinstein’s theorem.

The Poisson manifold is locally a product of a symplectic manifold with a
Poisson manifold with vanishing Poisson structure at the point.

(Mn,Π, p) ≈ (N2k, ω, p1)× (Mn−2k
0 ,Π0, p2)

The symplectic foliation on the manifold is locally a product of the
induced symplectic foliation on M0 with the symplectic leaf through x.
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The local Poisson case. Splitting Theorem.

The local structure for Poisson manifolds is given by the following:

Theorem (Weinstein)

Let (Mn,Π) be a smooth Poisson manifold and let p be a point of M of
rank 2k, then there is a smooth local coordinate system
(x1, y1, . . . , x2k, y2k, z1, . . . , zn−2k) near p, in which the Poisson structure
Π can be written as

Π =

k∑
i=1

∂

∂xi
∧ ∂

∂yi
+
∑
ij

fij(z)
∂

∂zi
∧ ∂

∂zj
,

where fij vanish at the origin.
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What is an integrable system on a Poisson manifold?

Definition

Let (M,Π) be a Poisson manifold of (maximal) rank 2r and of dimension
n. An s-tuplet of functions F = (f1, . . . , fs) on M is said to define a
Liouville integrable system on (M,Π) if

1 f1, . . . , fs are independent

2 f1, . . . , fs are pairwise in involution

3 r + s = n

Viewed as a map, F : M→ Rs is called the momentum map of (M,Π,F).
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Some examples

Gelfand-Ceitlin systems.

Examples obtained from projective dynamics (we add singularities to
the symplectic structure when we projectivize).

(non-commutative) Integrable systems obtained on M/G by
G-invariant functions (like geodesic flow on homogeneous
spaces,Bolsinov, Jovanovic).

Examples modelled on T ∗b (M) (relation to control theory?).
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Simultaneous normal Forms for integrable systems, Poisson
structures and group actions

There are several problems analogous to the symplectic case that we could
consider in the Poisson setting.

Normal form Symplectic Poisson
structure Darboux Thm Splitting thm
structure + r functions in inv. Darboux-Carathéodory ?
structure+int system Liouville-Mineur-Arnold ?
structure+group Equivariant Darboux th. ?
structure+non-comm. int. system Mishenko-Fomenko ?
structure+ int. system +group Equivariant action-angle ?

We can also consider these problems for “easy” Poisson manifolds (but
not as easy as symplectic). These will be the b-Poisson case.
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Goals of this talk

Action-angle coordinates (do they exist semilocally?)

Concentrate on the particular case of b-Poisson manifolds.

Study connection with toric actions.

Delzant polytopes for b-cases.
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A Darboux-Carathéodory theorem in the Poisson context

Theorem (Laurent, Miranda, Vanhaecke)

Let m be a point of a Poisson manifold (M,Π) of dimension n. Let
p1, . . . , pr be r functions in involution, defined on a neighborhood of m,
which vanish at m and whose Hamiltonian vector fields are linearly
independent at m. There exist, on a neighborhood U of m, functions
q1, . . . , qr, z1, . . . , zn−2r, such that

1 The n functions (p1, q1, . . . , pr, qr, z1, . . . , zn−2r) form a system of
coordinates on U , centered at m;

2 The Poisson structure Π is given on U by

Π =

r∑
i=1

∂

∂qi
∧ ∂

∂pi
+

n−2r∑
i,j=1

gij(z)
∂

∂zi
∧ ∂

∂zj
, (2.1)

where each function gij(z) is a smooth function on U and is
independent of p1, . . . , pr, q1, . . . , qr.
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Splitted integrable systems

Not every integrable system on a Poisson manifold can be splitted (in a
compatible way with Weinstein’s theorem).

Example

On R4, with coordinates f1, f2, g1, g2, consider:

Π =
∂

∂g1
∧ ∂

∂f1
+ χ(g2)

∂

∂g2
∧ ∂

∂f2
+ ψ(g2)

∂

∂g1
∧ ∂

∂f2
, (2.2)

with χ(g2) and ψ(g2) vanishing for g2 = 0, ( the rank of Π at 0 is 2).

{f1, f2} = 0.

The system would be splitted if there existed coordinates f1, f2, g1, g2
p1, q1, z1, z2, with p1, z1 depending only on f1 and f2, such that

Π =
∂

∂q1
∧ ∂

∂p1
+ φ(z1, z2)

∂

∂z1
∧ ∂

∂z2
. (2.3)
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Splitted integrable systems

The system is splitted iff the following equation has a solution

χ(g2)r
′(g2) = −ψ(g2)c1. (2.4)

But this equation does not admit a smooth solution, unless ψ(g2)/χ(g2)
is smooth at 0. Take for instance ψ(g2) = g2 and χ(g2) = g22. and the
system is not splitted

Laurent-Miranda

In general we can formulate the condition of an integrable system to be
splitted via the Vorobjev data (ΠV ert,Γ,F) associated to the Poisson
structure. These data are determined in terms of the Poisson fibration
over a symplectic leaf.
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An action-angle theorem for Poisson manifolds

Case of regular orbits

We assume that:

1 The mapping F = (f1, . . . , fs) defines an integrable system on the
Poisson manifold (M,Π) of dimension n and (maximal) rank 2r.

2 Suppose that m ∈M is a point such that it is regular for the
integrable system and the Poisson structure.

3 Assume further than the integral manifold Fm of the foliation
Xf1 , . . . Xfs through m is compact (Liouville torus).
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An action-angle theorem for Poisson manifolds

Theorem (Laurent, Miranda, Vanhaecke)

Then there exists R-valued smooth functions (σ1, . . . , σs) and
R/Z-valued smooth functions (θ1, . . . , θr), defined in a neighborhood U
of Fm such that

1 The functions (θ1, . . . , θr, σ1, . . . , σs) define a diffeomorphism
U ' Tr ×Bs;

2 The Poisson structure can be written in terms of these coordinates as

Π =

r∑
i=1

∂

∂θi
∧ ∂

∂σi
,

in particular the functions σr+1, . . . , σs are Casimirs of Π (restricted
to U);

3 The leaves of the surjective submersion F = (f1, . . . , fs) are given by
the projection onto the second component Tr ×Bs, in particular, the
functions σ1, . . . , σs depend only on the functions f1, . . . , fs.
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The Poisson proof

1 Topology of the foliation. The fibration in a neighbourhood of a
compact connected fiber is a trivial fibration by compact fibers.

2 These compact fibers are tori: We recover a Tn-action tangent to the
leaves of the foliation This implies a process of uniformization of
periods.

Φ : Rr × (Tr ×Bs) → Tr ×Bs

((t1, . . . , tr),m) 7→ Φ
(1)
t1
◦ · · · ◦ Φ

(r)
tr (m).

(2.5)

3 We prove that this action is Poisson ( we use the fact that if Y is a
complete vector field of period 1 and P is a bivector field for which
L2Y P = 0, then LY P = 0).

4 Finally we use the Poisson Cohomology of the manifold and averaging
with respect to this action to check that the action is Hamiltonian.

5 To construct action-angle coordinates we use Darboux-Carathéodory
and the constructed Hamiltonian action of Tn to drag normal forms
from a neighbourhood of a point to a neighbourhood of a fiber.
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What is an non-commutative integrable system on a
Poisson manifold?

Definition

Let (M,Π) be a Poisson manifold of dimension n. An s-uplet of functions
F = (f1, . . . , fs) is said to be a non-commutative integrable system of
rank r on (M,Π) if

(1) f1, . . . , fs are independent;

(2) The functions f1, . . . , fr are in involution with the functions
f1, . . . , fs;

(3) r + s = n;

(4) The Hamiltonian vector fields of the functions f1, . . . , fr are linearly
independent at some point of M .

Notice that 2r ≤ Rk Π, as a consequence of (4).

Remark: The mapping F = (f1, . . . , fs) is a Poisson map on Rs with Rs
endowed with a non-vanishing Poisson structure.
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An action-angle theorem for non-commutative systems

Theorem (Laurent, Miranda, Vanhaecke)

Let (M,Π) be a Poisson manifold of dimension n, equipped with a
non-commutative integrable system of rank r, and suppose that Fm is a
regular Liouville torus. Then there exist R-valued smooth functions
(p1, . . . , pr, z1, . . . , zs−r) and R/Z-valued smooth functions (θ1, . . . , θr),
defined in a neighborhood U of Fm, and functions such that

1 The functions (θ1, . . . , θr, p1, . . . , pr, z1, . . . , zs−r) define a
diffeomorphism U ' Tr ×Bs;

2 The Poisson structure can be written in terms of these coordinates as

Π =

r∑
i=1

∂

∂θi
∧ ∂

∂pi
+

s−r∑
k,l=1

φk,l(z)
∂

∂zk
∧ ∂

∂zl
;

3 The leaves of the surjective submersion F = (f1, . . . , fs) are given by
the projection onto the second component Tr ×Bs, in particular, the
functions p1, . . . , pr, z1, . . . , zs−r depend on the functions f1, . . . , fs
only.

The functions θ1, . . . , θr are called angle coordinates, the functions
p1, . . . , pr are called action coordinates and the remaining coordinates
z1, . . . , zs−r are called transverse coordinates.
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The case of b-Poisson manifolds
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Definition of Poisson b-manifolds

Definition

Let (M2n,Π) be an oriented Poisson manifold such that the map

p ∈M 7→ (Π(p))n ∈ Λ2n(TM)

is transverse to the zero section, then Z = {p ∈M |(Π(p))n = 0} is a
hypersurface and we say that Π is a Poisson b-structure on (M,Z).

This transversality condition gives stability properties for this Poisson
structure.

Symplectic foliation of a Poisson b-manifold

If we use Weinstein’s splitting theorem, we deduce that the symplectic
foliation of a Poisson b-manifold has dense symplectic leaves of maximal
dimension and codimension 2 symplectic leaves whose union is Z.
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Motivation: b-objects in dimension 2

We consider pairs (M,Z) where M is a compact oriented surface and Z a
union of embedded smooth curves:
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Motivation: b-structures in dimension 2

Given an oriented surface S (compact or not) with a distinguished union of
curves Z, we want to modify the volume form on S by making it “explode”
when we get close to Z. We want this “blow up” process to be controlled.
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Motivation: b-structures in dimension 2

What does “controlled” mean here?

Consider the Lie algebra g to be the Lie algebra of the affine group in
dimension 2.

It is a model for noncommutative Lie algebras in dimension 2 and in a
basis e1, e2 the brackets are

[e1, e2] = e2

We can naturally write this Lie algebra structure (bilinear) as the Poisson
structure

Π = y
∂

∂x
∧ ∂

∂y
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Poisson b-structures in dimension 2

This Poisson structure is dual to the 2-form

ω =
1

y
dx ∧ dy

In this example Z is the x-axis:

In this example Z is formed by symplectic leaves of dimension 0 (points on
the line). The upper and lower half-planes are symplectic leaves of
dimension 2.
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b-tangent bundles

A vector field in a point of the boundary has to be tangent to the boundary.

Observe that for any point p ∈ ∂(Hn
+), the tangent bundle at p is generated by Tp(Hn

+) = 〈y1 ∂
∂y1 p

, ∂
∂y2 p

. . . ∂
∂yn p

〉.

Melrose proved that there exists a vector bundle (the b-tangent bundle, bT (M)) with sections the set of vector fields tangent

to Z.

Melrose
With this idea Melrose constructed the b-cotangent bundle of this surface. This

was the starting point of b-calculus for differential calculus on manifolds with

boundary.
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Darboux theorem

Consider the Poisson structure

Π = y1
∂

∂x1
∧ ∂

∂y1
+

n∑
i=2

∂

∂xi
∧ ∂

∂yi

It can also be interpreted as a section of Λ2(bT (M)).

We also have a “Liouville” one-form interpretation for this Poisson
structure.

Darboux theorem for our manifolds

We can prove a b-Darboux theorem which tells us that locally all Poisson
b-manifolds look like this model. The proof uses a Moser theorem for the
complex of b-forms.

The b-category

Thus, the moral is that b-Poisson manifolds lie between the symplectic and
Poisson world and we can get some interesting results that we do not get
for general Poisson manifolds.
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Higher dimensions: Some compact examples.

Let (R, πR) be a Radko compact surface and let (S, π) be a compact
symplectic surface, then (R× S1, πR + π) is a b-Poisson manifold of
dimension 4.

Other product structures to get higher dimensions.

We can perturb this product structure to obtain a non-product one.
For instance, S2 with critical surface Z. Consider the Poisson
structure Π1 = h ∂

∂h ∧
∂
∂θ and the two torus T2 with Poisson structure

Π2 = ∂
∂θ1
∧ ∂
∂θ2

. Consider,

Π̂ = h
∂

∂h
∧ (

∂

∂θ
+

∂

∂θ1
) + Π2.

Then (S2 × T2, Π̂) is a b-Poisson manifold.

Moser’s ideas

Via a path theorem, we can control perturbations that produce equivalent
Poisson structures.
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More examples.

Take (N, π) be a regular Poisson manifold with dimension 2n+ 1 and
rank 2n and let X be a Poisson vector field. Now consider the
product S1 ×N with the bivector field

Π = f(θ)
∂

∂θ
∧X + π.

This is a b-Poisson manifold as long as,

1 the function f vanishes linearly.
2 The vector field X is transverse to the symplectic leaves of N .

We then have as many copies of N as zeroes of f .
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Global constructions

Induced Poisson structures

Given a b-Poisson structure Π on M2n with an integrable system on it we
get an induced Poisson structure on Z (critical set) which is a regular
Poisson structure with an induced integrable system with symplectic leaves
of codimension 1 endowed with a collection of integrable systems.

We can look for converse results.

Given a Poisson manifold Z with codimension 1 symplectic foliation L, we
want to answer the following questions:

1 Does (Z,ΠL) extend to a b-Poisson structure on a neighbourhood of
Z in M ?

2 If so to what extent is this structure unique?
3 Global results à la Radko?
4 Can we add integrable systems on it and also find a extension

theorem for the integrable system?
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Global constructions for higher dimensions: Going
backwards...

Semilocal answer

We will thicken our regular Poisson manifold Z and we will consider a
tubular neighbourhood construction:

ω = p∗(αZ) ∧ df
f

+ p∗(ωZ)

Using αZ a defining one-form for the symplectic foliation on Z and ωZ a
two form that restricts to the symplectic form on every symplectic leaf.
These forms need to satisfy more constraints in order to work.
So the answer is: Not always.
Once this construction is done, the construction of the integrable system is
automatic (we just add the defining function for the b-manifold).
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The L-De Rham complex

Choose α ∈ Ω1(Z) and ω ∈ Ω2(Z) such that for all L ∈ L (symplectic foliation)
such that for all L ∈ L, i∗Lα = 0 and i∗Lω = ωL.

Notice that
dα = α ∧ β, β ∈ Ω1(Z) (3.1)

Therefore we can consider the complex

ΩkL = ΩK/αΩk−1

Consider Ω0 = α ∧ Ω we get a short exact sequence of complexes

0 −→ Ω0
i−→ Ω

j−→ ΩL −→ 0

By differentiation of 3.1 we get 0 = d(dα) = dβ ∧ α− β ∧ β ∧ α = dβ ∧ α, so dβ is in Ω0, i.e., d(jβ) = 0.

First obstruction class

We define the obstruction class c1(ΠL) ∈ H1(ΩL) to be c1(ΠL) = [jβ]

Notice that c1(ΠL) = 0 iff we can find a closed one form for the foliation.
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The L-De Rham complex

Assume now c1(ΠL) = 0 then, we obtain dω = α ∧ β2.

Second obstruction class

We define the obstruction class c2(ΠL) ∈ H2(ΩL) to be c2(ΠL) = [jβ2]

Main property

c2(ΠL) = 0 ⇔ there exists a closed 2-form, ω, such that i∗L(ω) = ωL.

The role of these invariants

c1(ΠL) = c2(ΠL) = 0⇔ there exists a Poisson vector field v transversal to
L.

Relation of v, ω and α:

1 ivα = 1.

2 ivω = 0.

The fibration is a symplectic fibration and v defines an Ehresmann connection.
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Summing up,

The foliation induced by a b-Poisson structure on its critical hypersurface
satisfies,

we can choose the defining one-form α to be closed

symplectic structure on leaves which extends to a closed 2-form ω on
M

Given a symplectic foliation on a corank 1 regular Poisson manifold α and
ω exists if and only if the invariants c1(ΠL) and c2(ΠL) vanish.

Question 1

How does the critical surface looks like? What about its foliation?

Question 2

Is every codimension one regular Poisson manifold with vanishing
invariants the critical hypersurface of a b-Poisson manifold?
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A symplectic variation of Tischler theorem

Theorem (Guillemin-Miranda-Pires)

If c1(ΠL) and c2(ΠL) vanish and L contains a compact leaf L, then M is
the mapping torus of the symplectomorphism φ : L→ L determined by
the flow of the Poisson vector field v.
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The extension property

Theorem (Guillemin-Miranda-Pires)

Let (M2n+1,Π0) be a compact corank-1 regular Poisson manifold with
vanishing invariants then there exists an extension of (M2n+1,Π) to a
b-Poisson manifold (U,Π). The extension is unique , up to isomorphism,
among the extensions such that [v] is the image of the modular class
under the map:

H1
Poisson(U) −→ H1

Poisson(M2n+1)
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Example

M = T4 and Z = T3 × {0}. Consider on Z the codimension 1 foliation
given by θ3 = aθ1 + bθ2 + k, with rationally independent a, b, 1 ∈ R. Then
take

α =
a

a2 + b2 + 1
dθ1 +

b

a2 + b2 + 1
dθ2 −

1

a2 + b2 + 1
dθ3,

ω = dθ1 ∧ dθ2 + b dθ1 ∧ dθ3 − a dθ2 ∧ dθ3,

This structure can be extended to a neighbourhood of Z in M . Indeed it
can be extended to the whole T4 by considering

Π = f(θ4)
∂

∂θ4
∧X + πω.
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Integrable systems on b-Poisson manifolds

In the case of Poisson b-manifolds, an integrable system is always split in a
neighbourhood of Z. We then have,

Theorem (Guillemin-Miranda-Pires)

An integrable system on a Poisson b-manifold of dimension 2n is
equivalent to an integrable system with functions (f1, . . . , fn) where in a
neighbourhood of the critical set Z:

1 The function f1 can be chosen to be a defining function for Z.

2 The remaining first integrals (f2, . . . , fn) are functions on Z defining
an integrable system on Z with respect to the restricted Poisson
structure ΠZ .
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Integrable systems on b-Poisson manifolds

Therefore most of the classical normal form and action-angle results for
symplectic manifolds also hold for Poisson b-manifolds in a neighbourhood
of points in Z. In particular,

Theorem (Guillemin-Miranda-Pires)

Given an integrable system with non-degenerate singularities on a Poisson
b-manifold (M,Z), there exists Eliasson-type normal forms in a
neighbourhood of points in Z and the minimal rank for these singularities
is 1 along Z.
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Extension theorem for integrable system

Theorem

Let (M2n+1,Π0) be a compact corank-1 regular Poisson manifold with
vanishing invariants and endowed with a leafwise integrable system then
there exists an extension of (M2n+1,Π) to a b-Poisson manifold (U,Π)
with an integrable system on it. The extension is unique , up to
isomorphism, among the extensions such that [v] is the image of the
modular class under the map:

H1
Poisson(U) −→ H1

Poisson(M2n+1)
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A recipe to extend integrable systems

1 Take an integrable system on a symplectic manifold (M,ω,F) and consider
a symplectomorphism φ preserving the integrable system.

2 Consider the symplectic mapping torus associated to this

symplectomorphism N2n+1 = M×[0,1]
(x,0)∼(φ(x),1) .

3 Let f : S1 → R a smooth function. The bivector field Π = f(θ) ∂∂θ ∧X + π
is a b-symplectic structure on S1 ×N if the function f vanishes linearly (the
manifold has as many critical components as the number of zeroes of the
function f). Also the new system H = (f,F) is an integrable system on the
b-symplectic manifold.

Example

Consider as b-Poisson manifold R2n with coordinates (x1, y1, . . . , xn−1, yn−1, z, t)

Π =
∑n−1
i=1

∂
∂xi
∧ ∂
∂yi

+ z ∂
∂z ∧

∂
∂t . Observe that the functions fi = xi ∀i ≤ n− 1

and fn = z are pairwise in involution. Thus, these functions define an integrable
system F = (x1, . . . , xn−1, z).
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More symmetries...
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Toric manifolds and Delzant polytopes

Toric manifolds are classified by Delzant’s polytopes. More specifically, the
bijective correspondence between these two sets is given by the image of

the moment map:
{toric manifolds} −→ {Delzant polytopes}
(M2n, ω,Tn, F ) −→ F (M)

Figure : Moment map for the T2-action on CP 2 given by
(eiθ1 , eiθ2) · [z0 : z1 : z2] := [z0 : eiθ1z1 : eiθ1z2]
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Equivariant Darboux-Carathéodory

Let m which is a fixed point for the action of a compact Lie group G on M . Let p1, . . . , pr be r G-invariant Poisson

commuting functions, defined on a neighborhood of m, Hamiltonian vector fields are linearly independent at m.

Theorem (Laurent-Miranda)

There exist, in a neighborhood U of m, functions q1, . . . , qr, z1, . . . , zs,
such that

1 the n functions (p1, q1, . . . , pr, qr, z1, . . . , zs) form a system of local
coordinates, centered at m;

2 the Poisson structure Π is given in these coordinates by

Π =

r∑
i=1

∂

∂qi
∧ ∂

∂pi
+

s∑
i,j=1

gij(z)
∂

∂zi
∧ ∂

∂zj
, (4.1)

where each function gij(z) is a smooth function and is independent
from p1, . . . , pr, q1, . . . , qr.

3 The action is linearizable in these coordinates.
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Definition

A Tn action which acts on a b-symplectic manifold (M,ω) by
b-symplectomorphisms is a Hamiltonian action if there exists a moment
map, i.e., a map µ = (µ1, . . . , µn) : M −→ Rn, such that

dµi = ω(X#
i , ·),

where X#
i is the vector field generated on M by the action of the i-th

circle in Tn = (S1)n.

In the b-toric case, we can recover information about the action from slices
that correspond to standard Delzant polytope on the mapping torus by
symplectic cutting.
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