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Preliminaries

Hamiltonian integrability

(P2n, ω) - symplectic manifold.

f ∈ C∞(P) 7−→ Xf , iXfω = −df - Hamiltonian vector field.

{f ,g} = ω(Xf ,Xg) - Poisson bracket.

The Hamiltonian equations
ẋ = Xf

are noncommutatively completely integrable, if there are 2n − r almost
everywhere independent integrals f1, f2, . . . , f2n−r and f1, . . . , fr
commute with all integrals

{fi , fj} = 0, i = 1, . . . ,2n − r , j = 1, . . . , r .
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Preliminaries

(i) Regular compact connected invariant manifolds of the system are
isotropic tori.

(ii) In a neighborhood of a regular torus, there exist canonical
generalized action-angle coordinates p,q, I, ϕ mod 2π

ω =
r∑

i=1

dIi ∧ dϕi +
n−r∑
j=1

dpj ∧ dqj ,

such that the integrals fi , i = 1, . . . , r depend only on actions Ii and
the flow is translation in angle coordinates:

ϕ̇1 = ω1(I) =
∂f
∂I1

, . . . , ϕ̇r = ωr (I) =
∂f
∂Ir

, İ = ṗ = q̇ = 0.

N. N. Nekhoroshev, Trans. Mosc. Math. Soc. 26 (1972)

A. S. Mishchenko and A. T. Fomenko, Funct. Anal. Appl. 12 (1978)
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Preliminaries

Contact manifolds

(M,H) - contact manifold.
Locally defined by a contact form: H = kerα, α ∧ (dα)n 6= 0.

N - Lie algebra of infinitesimal contact automorphisms.
Locally: X ∈ N ⇐⇒ LXα = fα.

(M, α), H = kerα - co-oriented (or stricly) contact manifold.

The Reeb vector field Z : iZα = 1, iZ dα = 0.

TM = Z ⊕H, T ∗M = H0 ⊕Z0,

Z = RZ , Z0, H0 = Rα are the annihilators of Z and H.
Decompositions of vector fields and 1-forms

X = (iXα)Z + X̂ , η = (iZη)α + η̂,

X̂ - horizontal, η̂ - semi-basic.
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Preliminaries

Contact Hamiltonian vector fields

Φ : N −→ C∞(M), Φ(X ) = iXα

infinitesimal contact automorphisms←→ smooth functions.

Φ−1(f ) = fZ + α](d̂f ).

Xf = Φ−1(f ) - contact Hamiltonian vector field, LXfα = df (Z )α

α] : Z0 → H is the inverse of α[ : TM −→ Z0, X 7→ −iX dα

Jacobi bracket [f ,g] = Φ[Xf ,Xg] = dα(Xf ,Xg) + fLZ g − gLZ

Φ is is a Lie algebra isomorphism X[f ,g] = [Xf ,Xg], X[1,f ] = [Z ,Xf ]

Does not satisfy the Leibniz rule. The derivation of functions along Xf

LXf g = [f ,g] + gLZ f .

df is sami-basic if and only if [1, f ] = [Z ,Xf ] = 0.
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Preliminaries

Canonical coordinates

M = R2n+1(x0, . . . , xn, y1, . . . , yn), α = dx0 −
∑n

i=1 yidxi
The Reeb vector field: Z = ∂

∂x0
Contact Hamiltonian equations for a Hamiltonian f :

ẋ0 = f −
n∑

i=1

yi
∂f
∂xi

,

ẋi = − ∂f
∂yi

, ẏi =
∂f
∂xi

+ yi
∂f
∂x0

, i = 1, . . . ,n.

The Jacobi bracket:

[f ,g] =
n∑

i=1

(
∂f
∂xi

∂g
∂yi
− ∂g
∂xi

∂f
∂yi

)

+
∂g
∂x0

(
f −

n∑
i=1

yi
∂f
∂xi

)
− ∂f
∂x0

(
g −

n∑
i=1

yi
∂g
∂xi

)
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Preliminaries

Non-Hamiltonian integrability

X - contact vector field (infinitesimal contact automorphisms) on
(M2n+1,H). A contact equation ẋ = X is (non-Hamiltonian) completely
integrable if there is an open dense subset Mreg ⊂ M, a proper
submersion π : M2n+1

reg −→W p, and an Abelian Lie algebra X of
symmetries such that:

(i) X is tangent to the fibers of π;
(ii) the fibers of π are orbits of X .

The fibers of π are (2n + 1− p)-dimensional tori with a quasi-periodic
dynamics.

V. V. Kozlov, 1996, O. I. Bogoyavlenskij, 1998, N. T. Zung, 2006

The above definition does not reflect the underlying contact structure.
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Contact integrability

Contact integrability

We shall say that the contact equation ẋ = X is noncommutatively
contact completely integrable if if there is an open dense subset
Mreg ⊂ M, a proper submersion π : M2n+1

reg −→W p, and an Abelian Lie
algebra X of contact symmetries such that (Mreg ,H,X ) is a complete
pre-isotropic contact structure.

In the case p = n we have a regular completely integrable contact
system studied in

A. Banyaga and P, Molino, Géométrie des formes de contact
complétement intégrables de type torique, Séminare Gaston Darboux,
Montpellier (1991-92), 1-25.
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Contact integrability

Complete pre-isotropic contact structures

(M2n+1,H) - contact manifold (not need to be co-oriented).

π : M2n+1 →W p - a proper submersion, p ≥ n.

F - the fibers of π.

(M,H,X ) is a complete pre-isotropic contact structure if
(i) F is pre-isotropic, i.e., it is transversal to H and G = F ∩H is an

isotropic subbundle of H, or, equivalently G is a foliation;
(ii) X is an Abelian Lie algebra of infinitesimal contact automorphisms

of H, which has the fibers of π as orbits.

Theorem
Let (M,H,X ) be a complete pre-isotropic contact structure related to
the submersion π. Every point of M has an open, X -invariant
neighborhood U on which the contact structure can be represented by
a local contact form αU such that:
(i) αU is invariant by all elements of X ;
(ii) the restriction of F to U is αU -complete.
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Contact integrability

α-Complete pre-isotropic foliations

F is α-complete if for any pair f1, f2 of first integrals of F (where fi may
be a constant), the bracket [f1, f2] is also a first integral of F (eventually
a constant).
Pseudo-orthogonal distribution: E = F⊥ – locally generated by the
Reeb vector field Z and the contact Hamiltonian vector fields which
corresponds to the first integrals of F .

In our case E is a foliation and we (locally) have a flag of foliations

G = F ∩H ⊂ F ⊂ E = G⊥ = F⊥.

If F has the maximal dimension n + 1 then F = E is pre-Legendrian,
while G is a Legendrian foliation.

P. Libermann, Differential Geometry and Its Application, 1 (1991) 57-76.
M. Y. Pang, Trans. Amer. Math. Soc. 320 (1990), 417-455.
B. Khesin and S. Tabachnikov, Regular and Chaotic Dynamics, 15
(2010), 504-520.
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Contact integrability

Billiards within ellipsoids in Rp,q

Pseudo-confocal family of quadrics

Qλ :

p∑
i=1

x2
i

a2
i + λ

+

p+q∑
i=p+i

x2
i

a2
i − λ

= 1

M2n−1
0 - contact manifold of oriented light-like lines in Rp,q,

p + q = n + 1

The set F of oriented light-like lines, tangent to the fixed n − 1
pseudo-confocal quadrics Qλ1 , . . . ,Qλn−1 is a codimension n − 1
submanifold in M0, foliated by Legendrian submanifolds of
codimension 1 in F .

B. Khesin and S. Tabachnikov, Pseudo-Riemannian geodesics and
billiards, Adv. in Math. (2009)
V. Dragovic and M. Radnovic, Ellipsoidal billiards in pseudo-Euclidean
spaces and relativitic quadrics, Adv. in Math. (2012)
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Contact integrability

Contact action-angle coordinates

Theorem (B.J. (2011))

Let F be a connected component of π−1(w0). Then F is diffeomorphic
to a r + 1-dimensional torus Tr+1, r = 2n − p. There exist an open
X -invariant neighborhood U of F , an X -invariant contact contact form
α on U and a diffeomorphism φ : U → Tr+1 × D,

φ(x) = (θ, y , x) = (θ0, θ1, . . . , θr , y1, . . . , yr , x1, . . . , x2s), s = n − r ,

where D ⊂ Rp is diffeomorphic to WU = π(U), such that
(i) F|U is α-complete foliation with integrals y1, . . . , yr , x1, . . . , x2s,

while the integrals of the pseudo-orthogonal foliation E|U = F|⊥U
are y1, . . . , yr .
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Contact integrability

Theorem (the second part)
(ii) α has the following canonical form

α0 = (φ−1)∗α = y0dθ0 +y1dθ1 + · · ·+yr dθr +g1dx1 + · · ·+g2sdx2s,

where y0 is a smooth function of y and gi are functions of (y , x).
(iii) the flow of X on invariant tori is quasi-periodic

(θ0, θ1, . . . , θr ) 7−→ (θ0 + tω0, θ1 + tω2, . . . , θr + tωr ), t ∈ R,

where frequencies ω0, . . . , ωr depend only on y.

We refer to local coordinates (θ, y) stated in Theorem as a generalized
contact action-angle coordinates.
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Contact integrability

Co-oriented case

H = kerα - co-oriented contact structure,
Z - the Reeb vector field.

Contact Hamiltonian equations

ẋ = Xf = fZ + α](d̂f )

are noncommutatively completely integrable, if there are 2n − r
integrals f1, f2, . . . , f2n−r (the contact Hamiltonian is either f = f1 or
f = 1), where:

[1, fi ] = 0, [fi , fj ] = 0, i = 1, . . . ,2n − r , j = 1, . . . , r .

and df1 ∧ · · · ∧ df2n−r 6= 0 holds on an open dense set Mreg of M.
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Contact integrability

Theorem
Let F be a compact connected component of the level set

{x | f1 = c1, . . . , f2n−r = c2n−r}

and assume F ⊂ Mreg . Then
(i) F is diffeomorphic to a r + 1-dimensional torus Tr+1. There exist a

neighborhood U of F with local generalized action-angle
coordinates in which α has the form
α = y0dθ0 + · · ·+ yr dθr + g1dx1 + · · ·+ g2sdx2s, where y0 is a
smooth function of y and gi are functions of (y , x).

(ii) The flow of X on invariant tori is quasi-periodic

(θ0, θ1, . . . , θr ) 7−→ (θ0 + tω0, θ1 + tω2, . . . , θr + tωr ), t ∈ R,
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Isoenergetic and partial integrability of Hamiltonian systems

Hypersurfaces of contact type

(P, ω) - symplectic manifold, H ∈ C∞(P) - Hamiltonian.

M- a regular component of an isoenergetic surface H−1(h).
XH generate the characteristic line bundle LM of M, the kernel of the
form ω restricted to M:

LM = {ξ ∈ TxM |ω(ξ,TxM) = 0, x ∈ M}

M is of contact type if there exist a 1-form α on M satisfying

dα = j∗ω, α(ξ) 6= 0, ξ ∈ LM , ξ 6= 0

where j : M → P is the inclusion. Then (M, α) is a co-oriented contact
manifold with the Reeb vector field Z proportional to XH |M .

If ω is exact ω = dα and α(XH)|M 6= 0 then M is of contact type with
respect to α.
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Isoenergetic and partial integrability of Hamiltonian systems

Isoenergetic integrability

Theorem (B.J and Vladimir Jovanovic (2012))

Let M = H−1(h) be a contact type hypersurface. Suppose a collection
of functions F1 = H, . . . ,F2n−r satisfy

{Fi ,Fj} = 0, i = 1, . . . ,2n − r , j = 1, . . . , r .

on M and that the restrictions F2|M , . . . ,F2n−r |M are independent. Then
the Reeb flow on M is contact completely integrable in a
noncommutative sense with respect to the integrals F2|M , . . . ,F2n−r |M .
The regular compact connected components of the invariant level sets

H = F1 = h, F2 = c2, . . . , F2n−r = c2n−r (1)

are invariant isotropic tori of (P, ω) (or pre-isotropic tori considered on
(M, α)) and the dynamics ẋ = XH is proportional to the quasi-periodic
dynamic of the Reeb flow on M.
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Isoenergetic and partial integrability of Hamiltonian systems

Partial integrability

Suppose that a Hamiltonian system ẋ = XH has n − 1 commuting
integrals F1 = H,F2, . . . ,Fn−1 and an invariant relation

Σ : F0 = 0,

that is, the trajectories with initial conditions on Σ stay on Σ for all time
t . If Σ is of the contact type manifold and if it is invariant for all
Hamiltonian flows XFi , then the compact regular components of the
invariant varieties

F0 = 0, H = F1 = c1, F2 = c2, . . . , Fn−1 = cn−1

are Lagrangian tori.

V. Dragović, B. Gajić, Comm. Math. Phys. 256 (2006), 397-435.

B. Jovanović, Nonlinearity 20 (2007), 221-240.

V. Dragović, B. Gajić, B. Jovanović, IJMMP 6 (2009), 1253-1304.
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Isoenergetic and partial integrability of Hamiltonian systems

Example: Hess–Appelrot system

The phase space:T ∗SO(3)
Local coordinates – Euler’s angles (ϕ, θ, ψ)
Canonical symplectic form: ω = d(pϕdϕ+ pθdθ + pψdψ)
Hamiltonian:

H =
1
2

(aM2
1 + aM2

2 + bM2
3 + 2cM1M3) + k cos θ,

where M1 = sinϕ
sin θ (pψ − pϕ cos θ) + pθ cosϕ,

M2 = cosϕ
sin θ (pψ − pϕ cos θ)− pθ sinϕ, M3 = pϕ.

Invariant relation: Σ : F0 = M3 = pϕ = 0

Integrals: F1 = H,F2 = pψ

{F0,F1} = 0|Σ, {F0,F2} = 0, {F1,F2} = 0
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Isoenergetic and partial integrability of Hamiltonian systems

The Hamiltonian vector field of F0 is XF0 = ∂/∂ϕ

(pϕdϕ+ pθdθ + pψdψ)(XF0) = pϕ ≡ 0|Σ

Σ is of contact type with respect to α:

α = pϕdϕ+ pθdθ + pψdψ + dϕ, α(XF0) ≡ 1.

Therefore, compact regular level sets

F0 = 0, F1 = H = h, F2 = c

are Lagrangian tori.
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Contact systems with constraints

Contact submanifolds

A contact submanifold of the contact manifold (M,HM) is a triple
(N,HN , j), where (N,HN) is a contact manifold and j : N → M is an
embedding such that j−1

∗ (HM) = HN .

Let (M, α) be a co-oriented contact manifold and j : N → M an
embedding. If we define

HN = {X ∈ TN | j∗(X ) ∈ HM} = j−1
∗ (HM),

then HN = ker(j∗α).

(N, j∗α) is a contact co-oriented submanifold of (M, α), if N is
transverse to HM and if dj∗α is non-degenerate on ker(j∗α).
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Contact systems with constraints

Dirac’s construction

Let (M, α) be a (2n + 1)-dimensional co-oriented contact manifold,
G1, . . . ,G2k smooth functions on M,

N = {x ∈ M |G1(x) = . . . = G2k (x) = 0}, (2)

and j : N → M be the corresponding embedding.

(a) If [1,Gj ] = 0|N , j = 1, . . . , 2k and

det([Gj ,Gi ]) 6= 0|N (3)

then (N, j∗α) is a contact submanifold of (M, α) with the Reeb vector
field that is the restriction of the the Reeb vector field Z of (M, α).
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Contact systems with constraints

(b) Let f be a smooth function on M and

Wf = Yf −
2k∑
i=1

λiYGi .

Then the system

dGj(Wf ) = Yf (Gj)−
∑

i

λiYGi (Gj) = 0 j = 1, . . . , 2k (4)

has a unique solution λ1 = λ1(f ), . . . , λ2k = λ2k (f ) on N. For the given
multipliers,

Y ∗f = Wf

is the contact Hamiltonian vector field of the function f restricted to N.
If g is any smooth function on M, the Jacobi bracket between the
restrictions of f and g to N is given by

[f |N ,g|N ]N = [f ,g] +
∑
i,j

[Gi ,g]Aij [Gj , f ], (5)

where Aij is the inverse of the matrix ([Gi ,Gj ]).
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Contact systems with constraints

Contact sphere

Cn+1 ∼= R2n+2, zj = xj + iyj , (j = 0, . . . ,n).

S2n+1 : F = 1, F (z, z̄) =
n∑

j=0

|zj |2.

α =
i
8

n∑
j=0

aj(zjdz̄j − z̄jdzj) =
1
4

n∑
j=0

aj(xjdyj − yjdxj).

(S2n+1, α) is a co-oriented contact manifold with the Reeb vector field

Z = 4i
n∑

j=0

1
aj

(
zj
∂

∂zj
− z̄j

∂

∂z̄j

)
.

The Reeb flow induced is completely contact integrable by means of
commuting integrals

fj(z) = |zj |2, Yj =
4i
aj

(
zj
∂

∂zj
− z̄j

∂

∂z̄j

)
, j = 0, . . . ,n
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Contact systems with constraints

Reduction to Brieskorn manifolds

Let G(z) =
∑n

j=0 zaj
j . The set

B = {z ∈ Cn+1 : F (z, z̄) = 1, G(z) = 0}

is known as Brieskorn manifold and (B, α) is a co-oriented contact
manifold with the Reeb vector field Z |B.

R. Lutz, C. Meckert, C.R. Acad. Sci. Paris Ser. A-B 282 (1976).

From a point of view of the construction presented in the previous
section, note that

Z (G) = 4i ·G,
implying [G1,1] = [G2,1] = 0|B,
G1 = 1

2
∑n

j=0
(
zaj

j + z̄aj
j

)
= <(G), G2 = 1

2i
∑n

j=0
(
zaj

j − z̄aj
j

)
= =(G).

Also

[G1,G2] = µ = 2
n∑

j=0

aj |zj |2(aj−1) = 2
n∑

j=0

aj f
aj−1
j 6= 0.
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Contact systems with constraints

Theorem (B.J and Vladimir Jovanovic (2012))

Let f and g be integrals of the Reeb vector field Z |B. Then

[f ,g]B = [f ,g] +
df (V2)dg(V1)− df (V1)dg(V2)

µ
,

where [·, ·]B is the Jacobi bracket on (B, α), [·, ·] is the Jacobi bracket
on (S2n+1, α) and

V1 = 2i
n∑

j=0

(
z̄aj−1

j
∂

∂zj
− zaj−1

j
∂

∂z̄j

)
, V2 = −2

n∑
j=0

(
z̄aj−1

j
∂

∂zj
+ zaj−1

j
∂

∂z̄j

)
.

[fj , fk ]B =
8i
µ

[
z̄aj

j zak
k − zaj

j z̄ak
k

]
6= 0,

for j 6= k .
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Contact systems with constraints

"Exotic" spheres

a0 = p, a1 = · · · = an = 2, where n = 2m + 1 and p ≡ ±1 ( mod 8).

Bp ≈ S4m+1 E. Brieskorn, Invent. Math. 2 (1966).

For p1 6= p2, the contact structures Hp1 = kerαp1 and Hp1 = kerαp1

are not isomorphic. Ustilovsky, Internat. Math. Res. Notices (1999).

The proof is based on the study of periodic trajectories of the Reeb
flow of the perturbed contact form 1

Hαp, which is equal to the contact
flow

ż = Y ∗H (6)

on (Bp, αp), where

H = F +
m∑

j=1

εjgj , 0 < εj < 1, j = 1, . . . ,m,

gj = i(z̄2jz2j+1 − z2j z̄2j+1) = 2(y2jx2j+1 − y2j+1x2j).
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ż = Y ∗H (6)

on (Bp, αp), where

H = F +
m∑

j=1

εjgj , 0 < εj < 1, j = 1, . . . ,m,

gj = i(z̄2jz2j+1 − z2j z̄2j+1) = 2(y2jx2j+1 − y2j+1x2j).

INSA de Rouen (14 - 16, November, 2012) Integrability in Dyn. Sys. and Control 28 / 32



Contact systems with constraints

From a point of view of integrability, we can consider the contact flow of
H as an integrable perturbation of the Reeb flow.

Theorem
The flow of Y ∗H is completely integrable in a noncommutative sense.
Generic invariant pre-isotropic tori are of dimension m + 1, spanned by
the Reeb flow and the contact flows of integrals g1, . . . ,gm.

B. J, Noncommutative integrability and action angle variables in contact
geometry, to appear in J. Symplectic Geometry (2012), arXiv:1103.3611
[math.SG]

B. J, Vladimir Jovanovic, Contact flows and integrable systems, (2012).
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Global contact action-angles variables

Let (M, α) be a co-oriented contact manifold with a complete
pre-isotropic contact structure defined by commuting infinitesimal
automorphisms X of α, such that the associated Reeb vector field Z is
a section of F = kerπ∗. We refer to a triple (M, α,X ) with the above
property as a complete pre-isotropic structure of the Reeb type.

The associated foliation F = kerπ∗ is α-complete.

N. N. Nekhoroshev, Action-angle variables and their generalization.
Trans. Mosc. Math. Soc. 26 (1972)

J. J. Duistermaat, On global action-angle coordinates. Comm. Pure
Appl. Math. 33 (1980)

P. Dazord and T. Delzant, Le probleme general des variables
actions-angles. J. Differential Geom. 26 (1987)
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Global contact action-angles variables

Let (M, α,X ) be a complete pre-isotropic structure of the Reeb type
and assume the fibers of are connected. Suppose that the intersection
of torodial domains Ui and Uj is connected. Then on Ui ∩ Uj we have
the following transition formulas:

θj
ν =

r∑
µ=0

M ij
νµ(θi

µ + F ij
µ(y i , x i)),

y j
ν =

r∑
µ=0

K ij
νµy i

µ, ν = 0, . . . , r ,

x j
a = X ij

a (y i , x i), a = 1, . . . ,2s,

where matrixes K ij = (K ij
νµ) and M ij = (K ij

νµ) belong to GL(r + 1,Z),
M = (K T )−1, and functions X ij

a (y i , x i), F ij
ν (y i , x i) satisfy

g i
a =

2s∑
b=1

g j
b
∂X ij

b

∂x i
a
,

2s∑
b=1

g j
b
∂X ij

b

∂y i
k

+
r∑

ν=0

y i
ν

∂F ij
ν

∂y i
k

= 0.
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Global contact action-angles variables

Theorem
Let (M, α,X ) be a complete pre-isotropic structure of the Reeb type
and let W ′ ⊂W, dim W ′ = dim W be a connected compact
submanifold (with a smooth boundary) such that
(i) π : M ′ →W ′ is a trivial principal Tr+1 bundle, M ′ = π−1(W ′).
(ii) There exist everywhere independent functions x̄1, . . . , x̄2s defined is
some neighborhood of W ′ satisfying:

〈dx1, . . . ,dx2s〉 ∩ E0 = 0,

where xa = x̄a ◦ π and E = F⊥ is the pseudo-orthogonal foliation of F .
Then there exist global action-angle variables (θ0, . . . , θr , y0, . . . , yr )
and functions ḡ1, . . . , ḡ2s : W ′ → R such that the contact form α on M ′

reads

α0 = y0dθ0 + · · ·+ yr dθr + π∗(ḡ1dx̄1 + · · ·+ ḡ2sdx̄2s).
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