# ISOENERGETIC INTEGRABILITY AND CONTACT SYSTEMS WITH CONSTRAINTS

Božidar Jovanović

Mathematical Institute SANU, Serbian Academy of Sciences and Arts, Belgrade

joint work with Vladimir Jovanović, University of Banja Luka

#### Integrability in Dynamical Systems and Control, Workshop at INSA de Rouen, 14 - 16, November, 2012

### Outline





Isoenergetic and partial integrability of Hamiltonian systems



Contact systems with constraints



Global contact action-angles variables

< ロ > < 同 > < 回 > < 回 >

#### Hamiltonian integrability

 $(P^{2n}, \omega)$  - symplectic manifold.

 $f \in C^{\infty}(P) \longmapsto X_f$ ,  $i_{X_f} \omega = -df$  - Hamiltonian vector field.

 $\{f, g\} = \omega(X_f, X_g)$  - Poisson bracket.

The Hamiltonian equations

$$\dot{x} = X_f$$

are noncommutatively completely integrable, if there are 2n - r almost everywhere independent integrals  $f_1, f_2, \ldots, f_{2n-r}$  and  $f_1, \ldots, f_r$  commute with all integrals

$$\{f_i, f_j\} = 0, \quad i = 1, \dots, 2n - r, \quad j = 1, \dots, r.$$

イロト 不得 トイヨト イヨト

#### Hamiltonian integrability

 $(P^{2n}, \omega)$  - symplectic manifold.

 $f \in C^{\infty}(P) \longmapsto X_f$ ,  $i_{X_f} \omega = -df$  - Hamiltonian vector field.

 $\{f, g\} = \omega(X_f, X_g)$  - Poisson bracket.

The Hamiltonian equations

$$\dot{x} = X_f$$

are noncommutatively completely integrable, if there are 2n - r almost everywhere independent integrals  $f_1, f_2, \ldots, f_{2n-r}$  and  $f_1, \ldots, f_r$  commute with all integrals

$$\{f_i, f_j\} = 0, \quad i = 1, \dots, 2n - r, \quad j = 1, \dots, r.$$

- (i) Regular compact connected invariant manifolds of the system are isotropic tori.
- (ii) In a neighborhood of a regular torus, there exist canonical generalized action-angle coordinates  $p, q, l, \varphi \mod 2\pi$

$$\omega = \sum_{i=1}^{r} dl_i \wedge d\varphi_i + \sum_{j=1}^{n-r} dp_j \wedge dq_j,$$

such that the integrals  $f_i$ , i = 1, ..., r depend only on actions  $I_i$  and the flow is translation in angle coordinates:

$$\dot{\varphi}_1 = \omega_1(I) = \frac{\partial f}{\partial I_1}, \dots, \dot{\varphi}_r = \omega_r(I) = \frac{\partial f}{\partial I_r}, \quad \dot{I} = \dot{p} = \dot{q} = 0.$$

N. N. Nekhoroshev, Trans. Mosc. Math. Soc. 26 (1972)
A. S. Mishchenko and A. T. Fomenko, Funct. Anal. Appl. 12 (1978)

< 日 > < 同 > < 回 > < 回 > < 回 > <

## Contact manifolds

 $(M, \mathcal{H})$  - contact manifold. Locally defined by a contact form:  $\mathcal{H} = \ker \alpha, \alpha \wedge (d\alpha)^n \neq 0$ .

 $\mathcal{N}$  - Lie algebra of infinitesimal contact automorphisms. Locally:  $X \in \mathcal{N} \iff \mathcal{L}_X \alpha = f \alpha$ .

 $(M, \alpha), \mathcal{H} = \ker \alpha$  - co-oriented (or stricly) contact manifold.

The Reeb vector field *Z*:  $i_Z \alpha = 1$ ,  $i_Z d\alpha = 0$ .

$$TM = \mathcal{Z} \oplus \mathcal{H}, \qquad T^*M = \mathcal{H}^0 \oplus \mathcal{Z}^0,$$

 $\mathcal{Z} = \mathbb{R}Z, \mathcal{Z}^0, \mathcal{H}^0 = \mathbb{R}\alpha$  are the annihilators of  $\mathcal{Z}$  and  $\mathcal{H}$ . Decompositions of vector fields and 1-forms

$$X = (i_X \alpha) Z + \hat{X}, \qquad \eta = (i_Z \eta) \alpha + \hat{\eta},$$

#### $\hat{X}$ - horizontal, $\hat{\eta}$ - semi-basic.

#### Contact manifolds

 $(M, \mathcal{H})$  - contact manifold.

Locally defined by a contact form:  $\mathcal{H} = \ker \alpha$ ,  $\alpha \wedge (\mathbf{d}\alpha)^n \neq \mathbf{0}$ .

 $\mathcal{N}$  - Lie algebra of infinitesimal contact automorphisms. Locally:  $X \in \mathcal{N} \iff \mathcal{L}_X \alpha = f \alpha$ .

 $(M, \alpha), \mathcal{H} = \ker \alpha$  - co-oriented (or stricly) contact manifold.

The Reeb vector field *Z*:  $i_Z \alpha = 1$ ,  $i_Z d\alpha = 0$ .

 $TM = \mathcal{Z} \oplus \mathcal{H}, \qquad T^*M = \mathcal{H}^0 \oplus \mathcal{Z}^0,$ 

 $\mathcal{Z} = \mathbb{R}Z, \mathcal{Z}^0, \mathcal{H}^0 = \mathbb{R}\alpha$  are the annihilators of  $\mathcal{Z}$  and  $\mathcal{H}$ . Decompositions of vector fields and 1-forms

$$X = (i_X \alpha) Z + \hat{X}, \qquad \eta = (i_Z \eta) \alpha + \hat{\eta},$$

#### $\hat{X}$ - horizontal, $\hat{\eta}$ - semi-basic.

A D A A B A A B A A B A B B

#### Contact manifolds

 $(M, \mathcal{H})$  - contact manifold.

Locally defined by a contact form:  $\mathcal{H} = \ker \alpha$ ,  $\alpha \wedge (\mathbf{d}\alpha)^n \neq \mathbf{0}$ .

 $\mathcal{N}$  - Lie algebra of infinitesimal contact automorphisms. Locally:  $X \in \mathcal{N} \iff \mathcal{L}_X \alpha = f \alpha$ .

 $(M, \alpha), \mathcal{H} = \ker \alpha$  - co-oriented (or stricly) contact manifold.

The Reeb vector field *Z*:  $i_Z \alpha = 1$ ,  $i_Z d\alpha = 0$ .

$$TM = \mathcal{Z} \oplus \mathcal{H}, \qquad T^*M = \mathcal{H}^0 \oplus \mathcal{Z}^0,$$

 $\mathcal{Z} = \mathbb{R}Z, \mathcal{Z}^0, \mathcal{H}^0 = \mathbb{R}\alpha$  are the annihilators of  $\mathcal{Z}$  and  $\mathcal{H}$ . Decompositions of vector fields and 1-forms

$$X = (i_X \alpha) Z + \hat{X}, \qquad \eta = (i_Z \eta) \alpha + \hat{\eta},$$

 $\hat{X}$  - horizontal,  $\hat{\eta}$  - semi-basic.

イロト 不得 トイヨト イヨト

$$\Phi: \mathcal{N} \longrightarrow C^{\infty}(M), \qquad \Phi(X) = i_X \alpha$$

infinitesimal contact automorphisms  $\longleftrightarrow$  smooth functions.

$$\Phi^{-1}(f) = fZ + \alpha^{\sharp}(\widehat{d}f).$$

 $X_f = \Phi^{-1}(f)$  - contact Hamiltonian vector field,  $\mathcal{L}_{X_f} \alpha = df(Z) \alpha$   $\alpha^{\sharp} : \mathbb{Z}^0 \to \mathcal{H}$  is the inverse of  $\alpha^{\flat} : TM \longrightarrow \mathbb{Z}^0$ ,  $X \mapsto -i_X d\alpha$ Jacobi bracket  $[f, g] = \Phi[X_f, X_g] = d\alpha(X_f, X_g) + f\mathcal{L}_Z g - g\mathcal{L}_Z$   $\Phi$  is is a Lie algebra isomorphism  $X_{[f,g]} = [X_f, X_g]$ ,  $X_{[1,f]} = [Z, X_f]$ Does not satisfy the Leibniz rule. The derivation of functions along  $X_f$ 

$$\mathcal{L}_{X_f}g=[f,g]+g\mathcal{L}_Zf.$$

*df* is sami-basic if and only if  $[1, f] = [Z, X_f] = 0$ 

INSA de Rouen (14 - 16, November, 2012)

$$\Phi: \mathcal{N} \longrightarrow C^{\infty}(M), \qquad \Phi(X) = i_X \alpha$$

infinitesimal contact automorphisms  $\leftrightarrow$  smooth functions.

$$\Phi^{-1}(f) = fZ + \alpha^{\sharp}(\widehat{d}f).$$

 $X_f = \Phi^{-1}(f)$  - contact Hamiltonian vector field,  $\mathcal{L}_{X_f} \alpha = df(Z) \alpha$   $\alpha^{\sharp} : \mathbb{Z}^0 \to \mathcal{H}$  is the inverse of  $\alpha^{\flat} : TM \longrightarrow \mathbb{Z}^0$ ,  $X \mapsto -i_X d\alpha$ Jacobi bracket  $[f,g] = \Phi[X_f, X_g] = d\alpha(X_f, X_g) + f\mathcal{L}_Z g - g\mathcal{L}_Z$   $\Phi$  is is a Lie algebra isomorphism  $X_{[f,g]} = [X_f, X_g]$ ,  $X_{[1,f]} = [Z, X_f]$ Does not satisfy the Leibniz rule. The derivation of functions along  $X_f$ 

$$\mathcal{L}_{X_f}g=[f,g]+g\mathcal{L}_Zf.$$

*df* is sami-basic if and only if  $[1, f] = [Z, X_f] = 0$ 

INSA de Rouen (14 - 16, November, 2012)

$$\Phi: \mathcal{N} \longrightarrow C^{\infty}(M), \qquad \Phi(X) = i_X \alpha$$

infinitesimal contact automorphisms  $\longleftrightarrow$  smooth functions.

$$\Phi^{-1}(f) = fZ + \alpha^{\sharp}(\widehat{d}f).$$

 $X_f = \Phi^{-1}(f)$  - contact Hamiltonian vector field,  $\mathcal{L}_{X_f} \alpha = df(Z) \alpha$   $\alpha^{\sharp} : \mathbb{Z}^0 \to \mathcal{H}$  is the inverse of  $\alpha^{\flat} : TM \longrightarrow \mathbb{Z}^0$ ,  $X \mapsto -i_X d\alpha$ Jacobi bracket  $[f,g] = \Phi[X_f, X_g] = d\alpha(X_f, X_g) + f\mathcal{L}_Z g - g\mathcal{L}_Z$   $\Phi$  is is a Lie algebra isomorphism  $X_{[f,g]} = [X_f, X_g]$ ,  $X_{[1,f]} = [Z, X_f]$ Does not satisfy the Leibniz rule. The derivation of functions along  $X_f$ 

$$\mathcal{L}_{X_f}g=[f,g]+g\mathcal{L}_Zf.$$

*df* is sami-basic if and only if  $[1, f] = [Z, X_f] = 0$ 

INSA de Rouen (14 - 16, November, 2012)

$$\Phi: \mathcal{N} \longrightarrow \mathcal{C}^{\infty}(M), \qquad \Phi(X) = i_X \alpha$$

infinitesimal contact automorphisms  $\longleftrightarrow$  smooth functions.

$$\Phi^{-1}(f) = fZ + \alpha^{\sharp}(\widehat{d}f).$$

 $X_f = \Phi^{-1}(f)$  - contact Hamiltonian vector field,  $\mathcal{L}_{X_f} \alpha = df(Z) \alpha$   $\alpha^{\sharp} : \mathbb{Z}^0 \to \mathcal{H}$  is the inverse of  $\alpha^{\flat} : TM \longrightarrow \mathbb{Z}^0$ ,  $X \mapsto -i_X d\alpha$ Jacobi bracket  $[f, g] = \Phi[X_f, X_g] = d\alpha(X_f, X_g) + f\mathcal{L}_Z g - g\mathcal{L}_Z$   $\Phi$  is is a Lie algebra isomorphism  $X_{[f,g]} = [X_f, X_g]$ ,  $X_{[1,f]} = [Z, X_f]$ Does not satisfy the Leibniz rule. The derivation of functions along  $X_f$ 

$$\mathcal{L}_{X_f}g=[f,g]+g\mathcal{L}_Zf.$$

*df* is sami-basic if and only if  $[1, f] = [Z, X_f] = 0$ 

INSA de Rouen (14 - 16, November, 2012)

Integrability in Dyn. Sys. and Control

$$\Phi: \mathcal{N} \longrightarrow \mathcal{C}^{\infty}(M), \qquad \Phi(X) = i_X \alpha$$

infinitesimal contact automorphisms  $\leftrightarrow$  smooth functions.

$$\Phi^{-1}(f) = fZ + \alpha^{\sharp}(\widehat{d}f).$$

 $X_f = \Phi^{-1}(f)$  - contact Hamiltonian vector field,  $\mathcal{L}_{X_f} \alpha = df(Z) \alpha$   $\alpha^{\sharp} : \mathcal{Z}^0 \to \mathcal{H}$  is the inverse of  $\alpha^{\flat} : TM \longrightarrow \mathcal{Z}^0$ ,  $X \mapsto -i_X d\alpha$ Jacobi bracket  $[f, g] = \Phi[X_f, X_g] = d\alpha(X_f, X_g) + f\mathcal{L}_Z g - g\mathcal{L}_Z$   $\Phi$  is is a Lie algebra isomorphism  $X_{[f,g]} = [X_f, X_g]$ ,  $X_{[1,f]} = [Z, X_f]$ Does not satisfy the Leibniz rule. The derivation of functions along  $X_f$ 

$$\mathcal{L}_{X_f}g=[f,g]+g\mathcal{L}_Zf.$$

*df* is sami-basic if and only if  $[1, f] = [Z, X_f] = 0$ .

#### Canonical coordinates

 $M = \mathbb{R}^{2n+1}(x_0, \dots, x_n, y_1, \dots, y_n), \alpha = dx_0 - \sum_{i=1}^n y_i dx_i$ The Reeb vector field:  $Z = \frac{\partial}{\partial x_0}$ Contact Hamiltonian equations for a Hamiltonian *f*:

$$\begin{split} \dot{x}_0 &= f - \sum_{i=1}^n y_i \frac{\partial f}{\partial x_i}, \\ \dot{x}_i &= -\frac{\partial f}{\partial y_i}, \quad \dot{y}_i = \frac{\partial f}{\partial x_i} + y_i \frac{\partial f}{\partial x_0}, \quad i = 1, \dots, n. \end{split}$$

The Jacobi bracket:

$$[f,g] = \sum_{i=1}^{n} \left( \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial y_{i}} - \frac{\partial g}{\partial x_{i}} \frac{\partial f}{\partial y_{i}} \right) \\ + \frac{\partial g}{\partial x_{0}} \left( f - \sum_{i=1}^{n} y_{i} \frac{\partial f}{\partial x_{i}} \right) - \frac{\partial f}{\partial x_{0}} \left( g - \sum_{i=1}^{n} y_{i} \frac{\partial g}{\partial x_{i}} \right)$$

# Non-Hamiltonian integrability

*X* - contact vector field (infinitesimal contact automorphisms) on  $(M^{2n+1}, \mathcal{H})$ . A contact equation  $\dot{x} = X$  is (non-Hamiltonian) completely integrable if there is an open dense subset  $M_{reg} \subset M$ , a proper submersion  $\pi : M_{reg}^{2n+1} \longrightarrow W^p$ , and an Abelian Lie algebra  $\mathcal{X}$  of symmetries such that:

- (i) X is tangent to the fibers of  $\pi$ ;
- (ii) the fibers of  $\pi$  are orbits of  $\mathcal{X}$ .

The fibers of  $\pi$  are (2n + 1 - p)-dimensional tori with a quasi-periodic dynamics.

#### • V. V. Kozlov, 1996, O. I. Bogoyavlenskij, 1998, N. T. Zung, 2006

The above definition does not reflect the underlying contact structure.

イロト 不得 トイヨト イヨト

# Non-Hamiltonian integrability

*X* - contact vector field (infinitesimal contact automorphisms) on  $(M^{2n+1}, \mathcal{H})$ . A contact equation  $\dot{x} = X$  is (non-Hamiltonian) completely integrable if there is an open dense subset  $M_{reg} \subset M$ , a proper submersion  $\pi : M_{reg}^{2n+1} \longrightarrow W^p$ , and an Abelian Lie algebra  $\mathcal{X}$  of symmetries such that:

- (i) X is tangent to the fibers of  $\pi$ ;
- (ii) the fibers of  $\pi$  are orbits of  $\mathcal{X}$ .

The fibers of  $\pi$  are (2n + 1 - p)-dimensional tori with a quasi-periodic dynamics.

• V. V. Kozlov, 1996, O. I. Bogoyavlenskij, 1998, N. T. Zung, 2006

The above definition does not reflect the underlying contact structure.

< 日 > < 同 > < 回 > < 回 > < 回 > <

# Contact integrability

We shall say that the contact equation  $\dot{x} = X$  is noncommutatively contact completely integrable if if there is an open dense subset  $M_{reg} \subset M$ , a proper submersion  $\pi : M_{reg}^{2n+1} \longrightarrow W^p$ , and an Abelian Lie algebra  $\mathcal{X}$  of contact symmetries such that  $(M_{reg}, \mathcal{H}, \mathcal{X})$  is a complete pre-isotropic contact structure.

In the case p = n we have a *regular completely integrable contact system* studied in

 A. Banyaga and P, Molino, Géométrie des formes de contact complétement intégrables de type torique, Séminare Gaston Darboux, Montpellier (1991-92), 1-25.

< 日 > < 同 > < 回 > < 回 > < 回 > <

# Complete pre-isotropic contact structures

- $(M^{2n+1}, \mathcal{H})$  contact manifold (not need to be co-oriented).
- $\pi: M^{2n+1} \rightarrow W^{p}$  a proper submersion,  $p \geq n$ .

#### $\mathcal F$ - the fibers of $\pi$ .

- $(M, \mathcal{H}, \mathcal{X})$  is a complete pre-isotropic contact structure if
- (i)  $\mathcal{F}$  is pre-isotropic, i.e., it is transversal to  $\mathcal{H}$  and  $\mathcal{G} = \mathcal{F} \cap \mathcal{H}$  is an isotropic subbundle of  $\mathcal{H}$ , or, equivalently  $\mathcal{G}$  is a foliation;
- (ii)  $\mathcal{X}$  is an Abelian Lie algebra of infinitesimal contact automorphisms of  $\mathcal{H}$ , which has the fibers of  $\pi$  as orbits.

#### Theorem

Let  $(M, \mathcal{H}, \mathcal{X})$  be a complete pre-isotropic contact structure related to the submersion  $\pi$ . Every point of M has an open,  $\mathcal{X}$ -invariant neighborhood U on which the contact structure can be represented by a local contact form  $\alpha_U$  such that: (i)  $\alpha_U$  is invariant by all elements of  $\mathcal{X}$ ;

INSA de Rouen (14 - 16, November, 2012)

Integrability in Dyn. Sys. and Control

## Complete pre-isotropic contact structures

- $(M^{2n+1}, \mathcal{H})$  contact manifold (not need to be co-oriented).
- $\pi: M^{2n+1} \rightarrow W^{p}$  a proper submersion,  $p \ge n$ .
- ${\mathcal F}$  the fibers of  $\pi$ .
- $(M, \mathcal{H}, \mathcal{X})$  is a complete pre-isotropic contact structure if
  - (i)  $\mathcal{F}$  is pre-isotropic, i.e., it is transversal to  $\mathcal{H}$  and  $\mathcal{G} = \mathcal{F} \cap \mathcal{H}$  is an isotropic subbundle of  $\mathcal{H}$ , or, equivalently  $\mathcal{G}$  is a foliation;
  - (ii)  $\mathcal{X}$  is an Abelian Lie algebra of infinitesimal contact automorphisms of  $\mathcal{H}$ , which has the fibers of  $\pi$  as orbits.

#### Theorem

Let  $(M, \mathcal{H}, \mathcal{X})$  be a complete pre-isotropic contact structure related to the submersion  $\pi$ . Every point of M has an open,  $\mathcal{X}$ -invariant neighborhood U on which the contact structure can be represented by a local contact form  $\alpha_U$  such that: (i)  $\alpha_U$  is invariant by all elements of  $\mathcal{X}$ ;

(ii) the restriction of  $\mathcal{F}$  to U is  $\alpha_{11}$ -complete.

INSA de Rouen (14 - 16, November, 2012)

Integrability in Dyn. Sys. and Control

# $\alpha$ -Complete pre-isotropic foliations

 $\mathcal{F}$  is  $\alpha$ -complete if for any pair  $f_1, f_2$  of first integrals of  $\mathcal{F}$  (where  $f_i$  may be a constant), the bracket  $[f_1, f_2]$  is also a first integral of  $\mathcal{F}$  (eventually a constant).

*Pseudo-orthogonal distribution*:  $\mathcal{E} = \mathcal{F}^{\perp}$  – locally generated by the Reeb vector field *Z* and the contact Hamiltonian vector fields which corresponds to the first integrals of  $\mathcal{F}$ .

In our case  $\ensuremath{\mathcal{E}}$  is a foliation and we (locally) have a flag of foliations

 $\mathcal{G} = \mathcal{F} \cap \mathcal{H} \subset \mathcal{F} \subset \mathcal{E} = \mathcal{G}^{\perp} = \mathcal{F}^{\perp}.$ 

If  $\mathcal{F}$  has the maximal dimension n + 1 then  $\mathcal{F} = \mathcal{E}$  is pre-Legendrian, while  $\mathcal{G}$  is a Legendrian foliation.

• P. Libermann, Differential Geometry and Its Application, 1 (1991) 57-76.

- M. Y. Pang, Trans. Amer. Math. Soc. 320 (1990), 417-455.
- B. Khesin and S. Tabachnikov, Regular and Chaotic Dynamics, 15 (2010), 504-520.

# $\alpha$ -Complete pre-isotropic foliations

 $\mathcal{F}$  is  $\alpha$ -complete if for any pair  $f_1$ ,  $f_2$  of first integrals of  $\mathcal{F}$  (where  $f_i$  may be a constant), the bracket  $[f_1, f_2]$  is also a first integral of  $\mathcal{F}$  (eventually a constant).

*Pseudo-orthogonal distribution*:  $\mathcal{E} = \mathcal{F}^{\perp}$  – locally generated by the Reeb vector field *Z* and the contact Hamiltonian vector fields which corresponds to the first integrals of  $\mathcal{F}$ .

In our case  ${\mathcal E}$  is a foliation and we (locally) have a flag of foliations

$$\mathcal{G} = \mathcal{F} \cap \mathcal{H} \subset \mathcal{F} \subset \mathcal{E} = \mathcal{G}^{\perp} = \mathcal{F}^{\perp}.$$

If  $\mathcal{F}$  has the maximal dimension n + 1 then  $\mathcal{F} = \mathcal{E}$  is pre-Legendrian, while  $\mathcal{G}$  is a Legendrian foliation.

• P. Libermann, Differential Geometry and Its Application, 1 (1991) 57-76.

- M. Y. Pang, Trans. Amer. Math. Soc. 320 (1990), 417-455.
- B. Khesin and S. Tabachnikov, Regular and Chaotic Dynamics, 15 (2010), 504-520.

# Billiards within ellipsoids in $\mathbb{R}^{p,q}$

Pseudo-confocal family of quadrics

$$Q_{\lambda}: \sum_{i=1}^{p} \frac{x_{i}^{2}}{a_{i}^{2} + \lambda} + \sum_{i=p+i}^{p+q} \frac{x_{i}^{2}}{a_{i}^{2} - \lambda} = 1$$

 $M_0^{2n-1}$  - contact manifold of oriented light-like lines in  $\mathbb{R}^{p,q}$ , p+q=n+1

The set *F* of oriented light-like lines, tangent to the fixed n - 1 pseudo-confocal quadrics  $Q_{\lambda_1}, \ldots, Q_{\lambda_{n-1}}$  is a codimension n - 1 submanifold in  $M_0$ , foliated by Legendrian submanifolds of codimension 1 in *F*.

- B. Khesin and S. Tabachnikov, Pseudo-Riemannian geodesics and billiards, Adv. in Math. (2009)
- V. Dragovic and M. Radnovic, Ellipsoidal billiards in pseudo-Euclidean spaces and relativitic quadrics, Adv. in Math. (2012)

# Billiards within ellipsoids in $\mathbb{R}^{p,q}$

Pseudo-confocal family of quadrics

$$Q_{\lambda}: \sum_{i=1}^{p} \frac{x_{i}^{2}}{a_{i}^{2} + \lambda} + \sum_{i=p+i}^{p+q} \frac{x_{i}^{2}}{a_{i}^{2} - \lambda} = 1$$

 $M_0^{2n-1}$  - contact manifold of oriented light-like lines in  $\mathbb{R}^{p,q}$ , p+q=n+1

The set *F* of oriented light-like lines, tangent to the fixed n - 1 pseudo-confocal quadrics  $Q_{\lambda_1}, \ldots, Q_{\lambda_{n-1}}$  is a codimension n - 1 submanifold in  $M_0$ , foliated by Legendrian submanifolds of codimension 1 in *F*.

- B. Khesin and S. Tabachnikov, Pseudo-Riemannian geodesics and billiards, Adv. in Math. (2009)
- V. Dragovic and M. Radnovic, Ellipsoidal billiards in pseudo-Euclidean spaces and relativitic quadrics, Adv. in Math. (2012)

# Billiards within ellipsoids in $\mathbb{R}^{p,q}$

Pseudo-confocal family of quadrics

$$Q_{\lambda}: \sum_{i=1}^{p} \frac{x_i^2}{a_i^2 + \lambda} + \sum_{i=p+i}^{p+q} \frac{x_i^2}{a_i^2 - \lambda} = 1$$

 $M_0^{2n-1}$  - contact manifold of oriented light-like lines in  $\mathbb{R}^{p,q}$ , p+q=n+1

The set *F* of oriented light-like lines, tangent to the fixed n - 1 pseudo-confocal quadrics  $Q_{\lambda_1}, \ldots, Q_{\lambda_{n-1}}$  is a codimension n - 1 submanifold in  $M_0$ , foliated by Legendrian submanifolds of codimension 1 in *F*.

- B. Khesin and S. Tabachnikov, Pseudo-Riemannian geodesics and billiards, Adv. in Math. (2009)
- V. Dragovic and M. Radnovic, Ellipsoidal billiards in pseudo-Euclidean spaces and relativitic quadrics, Adv. in Math. (2012)

## Contact action-angle coordinates

#### Theorem (B.J. (2011))

Let F be a connected component of  $\pi^{-1}(w_0)$ . Then F is diffeomorphic to a r + 1-dimensional torus  $\mathbb{T}^{r+1}$ , r = 2n - p. There exist an open  $\mathcal{X}$ -invariant neighborhood U of F, an  $\mathcal{X}$ -invariant contact contact form  $\alpha$  on U and a diffeomorphism  $\phi : U \to \mathbb{T}^{r+1} \times D$ ,

$$\phi(\mathbf{x}) = (\theta, \mathbf{y}, \mathbf{x}) = (\theta_0, \theta_1, \dots, \theta_r, \mathbf{y}_1, \dots, \mathbf{y}_r, \mathbf{x}_1, \dots, \mathbf{x}_{2s}), \quad \mathbf{s} = \mathbf{n} - \mathbf{r},$$

where  $D \subset \mathbb{R}^{p}$  is diffeomorphic to  $W_{U} = \pi(U)$ , such that

(i) *F*|<sub>U</sub> is α-complete foliation with integrals y<sub>1</sub>,..., y<sub>r</sub>, x<sub>1</sub>,..., x<sub>2s</sub>, while the integrals of the pseudo-orthogonal foliation *E*|<sub>U</sub> = *F*|<sup>⊥</sup><sub>U</sub> are y<sub>1</sub>,..., y<sub>r</sub>.

イロト イポト イヨト イヨト

#### Theorem (the second part)

(ii)  $\alpha$  has the following canonical form

 $\alpha_0 = (\phi^{-1})^* \alpha = y_0 d\theta_0 + y_1 d\theta_1 + \dots + y_r d\theta_r + g_1 dx_1 + \dots + g_{2s} dx_{2s},$ 

where  $y_0$  is a smooth function of y and  $g_i$  are functions of (y, x). (iii) the flow of X on invariant tori is quasi-periodic

$$(\theta_0, \theta_1, \ldots, \theta_r) \longmapsto (\theta_0 + t\omega_0, \theta_1 + t\omega_2, \ldots, \theta_r + t\omega_r), \quad t \in \mathbb{R},$$

where frequencies  $\omega_0, \ldots, \omega_r$  depend only on y.

We refer to local coordinates  $(\theta, y)$  stated in Theorem as a generalized contact action-angle coordinates.

#### Theorem (the second part)

(ii)  $\alpha$  has the following canonical form

 $\alpha_0 = (\phi^{-1})^* \alpha = y_0 d\theta_0 + y_1 d\theta_1 + \dots + y_r d\theta_r + g_1 dx_1 + \dots + g_{2s} dx_{2s},$ 

where  $y_0$  is a smooth function of y and  $g_i$  are functions of (y, x). (iii) the flow of X on invariant tori is quasi-periodic

$$(\theta_0, \theta_1, \ldots, \theta_r) \longmapsto (\theta_0 + t\omega_0, \theta_1 + t\omega_2, \ldots, \theta_r + t\omega_r), \quad t \in \mathbb{R},$$

where frequencies  $\omega_0, \ldots, \omega_r$  depend only on y.

We refer to local coordinates  $(\theta, y)$  stated in Theorem as a generalized contact action-angle coordinates.

#### Co-oriented case

 $H = \ker \alpha$  - co-oriented contact structure, Z - the Reeb vector field.

Contact Hamiltonian equations

$$\dot{x} = X_f = fZ + \alpha^{\sharp}(\widehat{df})$$

are noncommutatively completely integrable, if there are 2n - r integrals  $f_1, f_2, \ldots, f_{2n-r}$  (the contact Hamiltonian is either  $f = f_1$  or f = 1), where:

$$[1, f_i] = 0, \quad [f_i, f_j] = 0, \quad i = 1, \dots, 2n - r, \quad j = 1, \dots, r.$$

and  $df_1 \wedge \cdots \wedge df_{2n-r} \neq 0$  holds on an open dense set  $M_{reg}$  of M.

< 日 > < 同 > < 回 > < 回 > < 回 > <

#### Theorem

Let F be a compact connected component of the level set

$$\{x \mid f_1 = c_1, \ldots, f_{2n-r} = c_{2n-r}\}$$

and assume  $F \subset M_{reg}$ . Then

- (i) *F* is diffeomorphic to a r + 1-dimensional torus T<sup>r+1</sup>. There exist a neighborhood U of F with local generalized action-angle coordinates in which α has the form
   α = y<sub>0</sub>dθ<sub>0</sub> + ··· + y<sub>r</sub>dθ<sub>r</sub> + g<sub>1</sub>dx<sub>1</sub> + ··· + g<sub>2s</sub>dx<sub>2s</sub>, where y<sub>0</sub> is a smooth function of y and g<sub>i</sub> are functions of (y, x).
- (ii) The flow of X on invariant tori is quasi-periodic

$$(\theta_0, \theta_1, \ldots, \theta_r) \longmapsto (\theta_0 + t\omega_0, \theta_1 + t\omega_2, \ldots, \theta_r + t\omega_r), \quad t \in \mathbb{R},$$

where frequencies  $\omega_0, \ldots, \omega_r$  depend only on y.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Hypersurfaces of contact type

 $(P, \omega)$  - symplectic manifold,  $H \in C^{\infty}(P)$  - Hamiltonian.

*M*- a regular component of an isoenergetic surface  $H^{-1}(h)$ . *X<sub>H</sub>* generate the characteristic line bundle  $\mathcal{L}_M$  of *M*, the kernel of the form  $\omega$  restricted to *M*:

$$\mathcal{L}_{M} = \{\xi \in T_{X}M \,|\, \omega(\xi, T_{X}M) = 0, \, x \in M\}$$

*M* is of contact type if there exist a 1-form  $\alpha$  on *M* satisfying

$$d\alpha = j^*\omega, \quad \alpha(\xi) \neq 0, \ \xi \in \mathcal{L}_M, \ \xi \neq 0$$

where  $j : M \to P$  is the inclusion. Then  $(M, \alpha)$  is a co-oriented contact manifold with the Reeb vector field *Z* proportional to  $X_H|_M$ .

If  $\omega$  is exact  $\omega = d\alpha$  and  $\alpha(X_H)|_M \neq 0$  then *M* is of contact type with respect to  $\alpha$ .

# Hypersurfaces of contact type

 $(P, \omega)$  - symplectic manifold,  $H \in C^{\infty}(P)$  - Hamiltonian.

*M*- a regular component of an isoenergetic surface  $H^{-1}(h)$ . *X<sub>H</sub>* generate the characteristic line bundle  $\mathcal{L}_M$  of *M*, the kernel of the form  $\omega$  restricted to *M*:

$$\mathcal{L}_{M} = \{\xi \in T_{X}M \,|\, \omega(\xi, T_{X}M) = 0, \, x \in M\}$$

*M* is of contact type if there exist a 1-form  $\alpha$  on *M* satisfying

$$dlpha = j^*\omega, \quad lpha(\xi) 
eq 0, \ \xi \in \mathcal{L}_M, \ \xi 
eq 0$$

where  $j : M \to P$  is the inclusion. Then  $(M, \alpha)$  is a co-oriented contact manifold with the Reeb vector field *Z* proportional to  $X_H|_M$ .

If  $\omega$  is exact  $\omega = d\alpha$  and  $\alpha(X_H)|_M \neq 0$  then *M* is of contact type with respect to  $\alpha$ .

э.

ヘロン 人間 とくほ とくほう

# Isoenergetic integrability

Theorem (B.J and Vladimir Jovanovic (2012))

Let  $M = H^{-1}(h)$  be a contact type hypersurface. Suppose a collection of functions  $F_1 = H, ..., F_{2n-r}$  satisfy

$$\{F_i, F_j\} = 0, \quad i = 1, \dots, 2n - r, \quad j = 1, \dots, r.$$

on *M* and that the restrictions  $F_2|_M, \ldots, F_{2n-r}|_M$  are independent. Then the Reeb flow on *M* is contact completely integrable in a noncommutative sense with respect to the integrals  $F_2|_M, \ldots, F_{2n-r}|_M$ . The regular compact connected components of the invariant level sets

$$H = F_1 = h, \quad F_2 = c_2, \quad \dots, \quad F_{2n-r} = c_{2n-r}$$
 (1)

are invariant isotropic tori of  $(P, \omega)$  (or pre-isotropic tori considered on  $(M, \alpha)$ ) and the dynamics  $\dot{x} = X_H$  is proportional to the quasi-periodic dynamic of the Reeb flow on M.

## Partial integrability

Suppose that a Hamiltonian system  $\dot{x} = X_H$  has n - 1 commuting integrals  $F_1 = H, F_2, \dots, F_{n-1}$  and an invariant relation

$$\Sigma$$
:  $F_0 = 0$ ,

that is, the trajectories with initial conditions on  $\Sigma$  stay on  $\Sigma$  for all time *t*. If  $\Sigma$  is of the contact type manifold and if it is invariant for all Hamiltonian flows  $X_{F_i}$ , then the compact regular components of the invariant varieties

$$F_0 = 0, \quad H = F_1 = c_1, \quad F_2 = c_2, \quad \dots, \quad F_{n-1} = c_{n-1}$$

are Lagrangian tori.

• V. Dragović, B. Gajić, Comm. Math. Phys. 256 (2006), 397-435.

• B. Jovanović, Nonlinearity 20 (2007), 221-240.

• V. Dragović, B. Gajić, B. Jovanović, IJMMP 6 (2009), 1253-1304.

# Partial integrability

Suppose that a Hamiltonian system  $\dot{x} = X_H$  has n - 1 commuting integrals  $F_1 = H, F_2, \dots, F_{n-1}$  and an invariant relation

$$\Sigma$$
:  $F_0 = 0$ ,

that is, the trajectories with initial conditions on  $\Sigma$  stay on  $\Sigma$  for all time *t*. If  $\Sigma$  is of the contact type manifold and if it is invariant for all Hamiltonian flows  $X_{F_i}$ , then the compact regular components of the invariant varieties

$$F_0 = 0, \quad H = F_1 = c_1, \quad F_2 = c_2, \quad \dots, \quad F_{n-1} = c_{n-1}$$

are Lagrangian tori.

- V. Dragović, B. Gajić, Comm. Math. Phys. 256 (2006), 397-435.
- B. Jovanović, Nonlinearity 20 (2007), 221-240.
- V. Dragović, B. Gajić, B. Jovanović, IJMMP 6 (2009), 1253-1304.

#### Example: Hess–Appelrot system

The phase space:  $T^*SO(3)$ Local coordinates – Euler's angles  $(\varphi, \theta, \psi)$ Canonical symplectic form:  $\omega = d(p_{\varphi}d\varphi + p_{\theta}d\theta + p_{\psi}d\psi)$ Hamiltonian:

$$H = \frac{1}{2}(aM_1^2 + aM_2^2 + bM_3^2 + 2cM_1M_3) + k\cos\theta,$$

where 
$$M_1 = \frac{\sin \varphi}{\sin \theta} (p_{\psi} - p_{\varphi} \cos \theta) + p_{\theta} \cos \varphi$$
,  
 $M_2 = \frac{\cos \varphi}{\sin \theta} (p_{\psi} - p_{\varphi} \cos \theta) - p_{\theta} \sin \varphi$ ,  $M_3 = p_{\varphi}$ .

Invariant relation:  $\Sigma$  :  $F_0 = M_3 = p_{\varphi} = 0$ 

Integrals:  $F_1 = H, F_2 = p_{\psi}$ 

$$\{F_0,F_1\}=0|_{\Sigma},\quad \{F_0,F_2\}=0,\quad \{F_1,F_2\}=0$$

・ロト ・四ト ・ヨト ・ヨト

#### Example: Hess–Appelrot system

The phase space:  $T^*SO(3)$ Local coordinates – Euler's angles  $(\varphi, \theta, \psi)$ Canonical symplectic form:  $\omega = d(p_{\varphi}d\varphi + p_{\theta}d\theta + p_{\psi}d\psi)$ Hamiltonian:

$$H = \frac{1}{2}(aM_1^2 + aM_2^2 + bM_3^2 + 2cM_1M_3) + k\cos\theta,$$

where 
$$M_1 = \frac{\sin \varphi}{\sin \theta} (p_{\psi} - p_{\varphi} \cos \theta) + p_{\theta} \cos \varphi$$
,  
 $M_2 = \frac{\cos \varphi}{\sin \theta} (p_{\psi} - p_{\varphi} \cos \theta) - p_{\theta} \sin \varphi$ ,  $M_3 = p_{\varphi}$ .

Invariant relation:  $\Sigma$  :  $F_0 = M_3 = p_{\varphi} = 0$ 

Integrals:  $F_1 = H, F_2 = p_{\psi}$ 

$$\{F_0,F_1\}=0|_{\Sigma}, \quad \{F_0,F_2\}=0, \quad \{F_1,F_2\}=0$$

The Hamiltonian vector field of  $F_0$  is  $X_{F_0} = \partial/\partial \varphi$ 

$$(p_{\varphi}d\varphi + p_{\theta}d\theta + p_{\psi}d\psi)(X_{F_0}) = p_{\varphi} \equiv 0|_{\Sigma}$$

 $\Sigma$  is of contact type with respect to  $\alpha$ :

$$\alpha = p_{\varphi} d\varphi + p_{\theta} d\theta + p_{\psi} d\psi + d\varphi, \qquad \alpha(X_{F_0}) \equiv 1.$$

Therefore, compact regular level sets

$$F_0 = 0, \quad F_1 = H = h, \quad F_2 = c$$

are Lagrangian tori.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Hamiltonian vector field of  $F_0$  is  $X_{F_0} = \partial/\partial \varphi$ 

$$(p_{\varphi}d\varphi + p_{\theta}d\theta + p_{\psi}d\psi)(X_{F_0}) = p_{\varphi} \equiv 0|_{\Sigma}$$

 $\Sigma$  is of contact type with respect to  $\alpha$ :

$$\alpha = p_{\varphi} d\varphi + p_{\theta} d\theta + p_{\psi} d\psi + d\varphi, \qquad \alpha(X_{F_0}) \equiv 1.$$

Therefore, compact regular level sets

$$F_0=0,\quad F_1=H=h,\quad F_2=c$$

are Lagrangian tori.

< 口 > < 同 > < 回 > < 回 > < 回 > <

# Contact submanifolds

A *contact submanifold* of the contact manifold  $(M, \mathcal{H}_M)$  is a triple  $(N, \mathcal{H}_N, j)$ , where  $(N, \mathcal{H}_N)$  is a contact manifold and  $j : N \to M$  is an embedding such that  $j_*^{-1}(\mathcal{H}_M) = \mathcal{H}_N$ .

Let  $(M, \alpha)$  be a co-oriented contact manifold and  $j : N \to M$  an embedding. If we define

$$\mathcal{H}_N = \{X \in TN \mid j_*(X) \in \mathcal{H}_M\} = j_*^{-1}(\mathcal{H}_M),$$

then  $\mathcal{H}_N = \ker(j^*\alpha)$ .

 $(N, j^*\alpha)$  is a contact co-oriented submanifold of  $(M, \alpha)$ , if N is transverse to  $\mathcal{H}_M$  and if  $dj^*\alpha$  is non-degenerate on ker $(j^*\alpha)$ .

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

# Contact submanifolds

A *contact submanifold* of the contact manifold  $(M, \mathcal{H}_M)$  is a triple  $(N, \mathcal{H}_N, j)$ , where  $(N, \mathcal{H}_N)$  is a contact manifold and  $j : N \to M$  is an embedding such that  $j_*^{-1}(\mathcal{H}_M) = \mathcal{H}_N$ .

Let  $(M, \alpha)$  be a co-oriented contact manifold and  $j : N \to M$  an embedding. If we define

$$\mathcal{H}_N = \{X \in TN \mid j_*(X) \in \mathcal{H}_M\} = j_*^{-1}(\mathcal{H}_M),$$

then  $\mathcal{H}_N = \ker(j^*\alpha)$ .

 $(N, j^*\alpha)$  is a contact co-oriented submanifold of  $(M, \alpha)$ , if N is transverse to  $\mathcal{H}_M$  and if  $dj^*\alpha$  is non-degenerate on ker $(j^*\alpha)$ .

・ロト ・ 四ト ・ ヨト ・ ヨト …

# Dirac's construction

Let  $(M, \alpha)$  be a (2n + 1)-dimensional co-oriented contact manifold,  $G_1, \ldots, G_{2k}$  smooth functions on M,

$$N = \{x \in M \mid G_1(x) = \ldots = G_{2k}(x) = 0\},$$
(2)

and  $j: N \rightarrow M$  be the corresponding embedding.

(a) If 
$$[1, G_j] = 0|_N, j = 1, ..., 2k$$
 and

$$\det([G_j, G_i]) \neq 0|_N \tag{3}$$

・ロト ・ 四ト ・ ヨト ・ ヨト …

then  $(N, j^*\alpha)$  is a contact submanifold of  $(M, \alpha)$  with the Reeb vector field that is the restriction of the the Reeb vector field *Z* of  $(M, \alpha)$ .

(b) Let f be a smooth function on M and

$$W_f = Y_f - \sum_{i=1}^{2k} \lambda_i Y_{G_i}.$$

Then the system

$$dG_j(W_f) = Y_f(G_j) - \sum_i \lambda_i Y_{G_i}(G_j) = 0 \qquad j = 1, ..., 2k$$
 (4)

has a unique solution  $\lambda_1 = \lambda_1(f), \ldots, \lambda_{2k} = \lambda_{2k}(f)$  on *N*. For the given multipliers,

$$Y_f^* = W_f$$

is the contact Hamiltonian vector field of the function f restricted to N. If g is any smooth function on M, the Jacobi bracket between the restrictions of f and g to N is given by

$$[f|_{N},g|_{N}]_{N} = [f,g] + \sum_{i,j} [G_{i},g] A_{ij}[G_{j},f],$$
(5)

where  $A_{ij}$  is the inverse of the matrix  $([G_i, G_j])$ .

#### Contact sphere

$$\mathbb{C}^{n+1} \cong \mathbb{R}^{2n+2}, \, z_j = x_j + i y_j, \, (j = 0, \dots, n).$$

$$S^{2n+1}:$$
  $F=1,$   $F(z,\bar{z})=\sum_{j=0}^{n}|z_j|^2.$ 

$$\alpha = \frac{i}{8}\sum_{j=0}^n a_j(z_j d\overline{z}_j - \overline{z}_j dz_j) = \frac{1}{4}\sum_{j=0}^n a_j(x_j dy_j - y_j dx_j).$$

 $(S^{2n+1}, \alpha)$  is a co-oriented contact manifold with the Reeb vector field

$$Z = 4i \sum_{j=0}^{n} \frac{1}{a_j} \left( z_j \frac{\partial}{\partial z_j} - \bar{z}_j \frac{\partial}{\partial \bar{z}_j} \right).$$

The Reeb flow induced is completely contact integrable by means of commuting integrals

$$f_j(z) = |z_j|^2, \quad Y_j = \frac{4i}{a_i} \left( z_j \frac{\partial}{\partial z_i} - \bar{z}_j \frac{\partial}{\partial \bar{z}_i} \right), \quad j = 0, \dots, n$$

INSA de Rouen (14 - 16, November, 2012)

Integrability in Dyn. Sys. and Control

25/32

# Reduction to Brieskorn manifolds

Let  $G(z)=\sum_{j=0}^n z_j^{a_j}.$  The set $B=\{z\in\mathbb{C}^{n+1}\,:\,F(z,ar{z})=1,\ G(z)=0\}$ 

is known as Brieskorn manifold and  $(B, \alpha)$  is a co-oriented contact manifold with the Reeb vector field  $Z|_B$ .

• R. Lutz, C. Meckert, C.R. Acad. Sci. Paris Ser. A-B 282 (1976).

From a point of view of the construction presented in the previous section, note that

$$Z(G)=4i\cdot G,$$

implying

 $[G_1, 1] = [G_2, 1] = 0|_B,$ 

 $G_{1} = \frac{1}{2} \sum_{j=0}^{n} \left( z_{j}^{a_{j}} + \bar{z}_{j}^{a_{j}} \right) = \Re(G), \quad G_{2} = \frac{1}{2i} \sum_{j=0}^{n} \left( z_{j}^{a_{j}} - \bar{z}_{j}^{a_{j}} \right) = \Im(G).$ Also

$$[G_1, G_2] = \mu = 2\sum_{j=0}^n a_j |z_j|^{2(a_j-1)} = 2\sum_{j=0}^n a_j f_j^{a_j-1} \neq 0.$$

Integrability in Dyn. Sys. and Control

# Reduction to Brieskorn manifolds

Let  $G(z) = \sum_{j=0}^{n} z_j^{a_j}$ . The set $B = \{z \in \mathbb{C}^{n+1} \ : \ F(z, \bar{z}) = 1, \ G(z) = 0\}$ 

is known as Brieskorn manifold and  $(B, \alpha)$  is a co-oriented contact manifold with the Reeb vector field  $Z|_B$ .

• R. Lutz, C. Meckert, C.R. Acad. Sci. Paris Ser. A-B 282 (1976).

From a point of view of the construction presented in the previous section, note that

$$Z(G)=4i\cdot G,$$

implying  $[G_1, 1] = [G_2, 1] = 0|_B$ ,

 $\begin{array}{l} G_1 = \frac{1}{2} \sum_{j=0}^n \left( z_j^{a_j} + \bar{z}_j^{a_j} \right) = \Re(G), \quad G_2 = \frac{1}{2i} \sum_{j=0}^n \left( z_j^{a_j} - \bar{z}_j^{a_j} \right) = \Im(G). \\ \text{Also} \end{array}$ 

$$[G_1, G_2] = \mu = 2 \sum_{j=0}^n a_j |z_j|^{2(a_j-1)} = 2 \sum_{j=0}^n a_j f_j^{a_j-1} \neq 0.$$

Theorem (B.J and Vladimir Jovanovic (2012))

Let f and g be integrals of the Reeb vector field  $Z|_B$ . Then

$$[f,g]_{B} = [f,g] + \frac{df(V_{2})dg(V_{1}) - df(V_{1})dg(V_{2})}{\mu},$$

where  $[\cdot, \cdot]_B$  is the Jacobi bracket on  $(B, \alpha)$ ,  $[\cdot, \cdot]$  is the Jacobi bracket on  $(S^{2n+1}, \alpha)$  and

$$V_{1} = 2i\sum_{j=0}^{n} \left( \bar{z}_{j}^{a_{j}-1} \frac{\partial}{\partial z_{j}} - z_{j}^{a_{j}-1} \frac{\partial}{\partial \bar{z}_{j}} \right), V_{2} = -2\sum_{j=0}^{n} \left( \bar{z}_{j}^{a_{j}-1} \frac{\partial}{\partial z_{j}} + z_{j}^{a_{j}-1} \frac{\partial}{\partial \bar{z}_{j}} \right)$$

$$[f_j, f_k]_B = \frac{8i}{\mu} \Big[ \bar{z}_j^{a_j} z_k^{a_k} - z_j^{a_j} \bar{z}_k^{a_k} \Big] \neq 0,$$

for  $j \neq k$ .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (B.J and Vladimir Jovanovic (2012))

Let f and g be integrals of the Reeb vector field  $Z|_B$ . Then

$$[f,g]_{B} = [f,g] + \frac{df(V_{2})dg(V_{1}) - df(V_{1})dg(V_{2})}{\mu},$$

where  $[\cdot, \cdot]_B$  is the Jacobi bracket on  $(B, \alpha)$ ,  $[\cdot, \cdot]$  is the Jacobi bracket on  $(S^{2n+1}, \alpha)$  and

$$V_{1} = 2i\sum_{j=0}^{n} \left( \bar{z}_{j}^{a_{j}-1} \frac{\partial}{\partial z_{j}} - z_{j}^{a_{j}-1} \frac{\partial}{\partial \bar{z}_{j}} \right), V_{2} = -2\sum_{j=0}^{n} \left( \bar{z}_{j}^{a_{j}-1} \frac{\partial}{\partial z_{j}} + z_{j}^{a_{j}-1} \frac{\partial}{\partial \bar{z}_{j}} \right)$$

$$[f_j, f_k]_B = \frac{8i}{\mu} \Big[ \bar{z}_j^{a_j} z_k^{a_k} - z_j^{a_j} \bar{z}_k^{a_k} \Big] \neq 0,$$

for  $j \neq k$ .

A (10) A (10)

#### "Exotic" spheres

 $a_0 = p$ ,  $a_1 = \cdots = a_n = 2$ , where n = 2m + 1 and  $p \equiv \pm 1 \pmod{8}$ .

 $B_p \approx S^{4m+1}$  E. Brieskorn, Invent. Math. **2** (1966).

For  $p_1 \neq p_2$ , the contact structures  $\mathcal{H}_{p_1} = \ker \alpha_{p_1}$  and  $\mathcal{H}_{p_1} = \ker \alpha_{p_1}$  are not isomorphic. Ustilovsky, Internat. Math. Res. Notices (1999).

The proof is based on the study of periodic trajectories of the Reeb flow of the perturbed contact form  $\frac{1}{H}\alpha_{p}$ , which is equal to the contact flow

$$\dot{z} = Y_H^* \tag{6}$$

on  $(B_{\rho}, \alpha_{\rho})$ , where

 $H = F + \sum_{j=1}^{m} \epsilon_j g_j, \qquad 0 < \epsilon_j < 1, \quad j = 1, \dots, m,$  $g_j = i(\bar{z}_{2j} z_{2j+1} - z_{2j} \bar{z}_{2j+1}) = 2(y_{2j} x_{2j+1} - y_{2j+1} x_{2j}).$ 

#### "Exotic" spheres

 $a_0 = p$ ,  $a_1 = \cdots = a_n = 2$ , where n = 2m + 1 and  $p \equiv \pm 1 \pmod{8}$ .

 $B_{p} \approx S^{4m+1}$  E. Brieskorn, Invent. Math. 2 (1966).

For  $p_1 \neq p_2$ , the contact structures  $\mathcal{H}_{p_1} = \ker \alpha_{p_1}$  and  $\mathcal{H}_{p_1} = \ker \alpha_{p_1}$  are not isomorphic. Ustilovsky, Internat. Math. Res. Notices (1999).

The proof is based on the study of periodic trajectories of the Reeb flow of the perturbed contact form  $\frac{1}{H}\alpha_{p}$ , which is equal to the contact flow

$$\dot{z} = Y_H^* \tag{6}$$

on  $(B_{\rho}, \alpha_{\rho})$ , where

$$H = F + \sum_{j=1}^{m} \epsilon_j g_j, \qquad 0 < \epsilon_j < 1, \quad j = 1, \dots, m,$$
  
$$g_j = i(\bar{z}_{2j} z_{2j+1} - z_{2j} \bar{z}_{2j+1}) = 2(y_{2j} x_{2j+1} - y_{2j+1} x_{2j}).$$

From a point of view of integrability, we can consider the contact flow of H as an integrable perturbation of the Reeb flow.

#### Theorem

The flow of  $Y_H^*$  is completely integrable in a noncommutative sense. Generic invariant pre-isotropic tori are of dimension m + 1, spanned by the Reeb flow and the contact flows of integrals  $g_1, \ldots, g_m$ .

- B. J, Noncommutative integrability and action angle variables in contact geometry, to appear in J. Symplectic Geometry (2012), arXiv:1103.3611 [math.SG]
- B. J, Vladimir Jovanovic, Contact flows and integrable systems, (2012).

Let  $(M, \alpha)$  be a co-oriented contact manifold with a complete pre-isotropic contact structure defined by commuting infinitesimal automorphisms  $\mathcal{X}$  of  $\alpha$ , such that the associated Reeb vector field Z is a section of  $\mathcal{F} = \ker \pi_*$ . We refer to a triple  $(M, \alpha, \mathcal{X})$  with the above property as a complete pre-isotropic structure of the Reeb type.

#### The associated foliation $\mathcal{F} = \ker \pi_*$ is $\alpha$ -complete.

- N. N. Nekhoroshev, Action-angle variables and their generalization. Trans. Mosc. Math. Soc. **26** (1972)
- J. J. Duistermaat, On global action-angle coordinates. Comm. Pure Appl. Math. **33** (1980)
- P. Dazord and T. Delzant, Le probleme general des variables actions-angles. J. Differential Geom. **26** (1987)

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Let  $(M, \alpha)$  be a co-oriented contact manifold with a complete pre-isotropic contact structure defined by commuting infinitesimal automorphisms  $\mathcal{X}$  of  $\alpha$ , such that the associated Reeb vector field Z is a section of  $\mathcal{F} = \ker \pi_*$ . We refer to a triple  $(M, \alpha, \mathcal{X})$  with the above property as a complete pre-isotropic structure of the Reeb type.

#### The associated foliation $\mathcal{F} = \ker \pi_*$ is $\alpha$ -complete.

- N. N. Nekhoroshev, Action-angle variables and their generalization. Trans. Mosc. Math. Soc. **26** (1972)
- J. J. Duistermaat, On global action-angle coordinates. Comm. Pure Appl. Math. **33** (1980)
- P. Dazord and T. Delzant, Le probleme general des variables actions-angles. J. Differential Geom. **26** (1987)

< 日 > < 同 > < 回 > < 回 > < □ > <

Let  $(M, \alpha)$  be a co-oriented contact manifold with a complete pre-isotropic contact structure defined by commuting infinitesimal automorphisms  $\mathcal{X}$  of  $\alpha$ , such that the associated Reeb vector field Z is a section of  $\mathcal{F} = \ker \pi_*$ . We refer to a triple  $(M, \alpha, \mathcal{X})$  with the above property as a complete pre-isotropic structure of the Reeb type.

The associated foliation  $\mathcal{F} = \ker \pi_*$  is  $\alpha$ -complete.

- N. N. Nekhoroshev, Action-angle variables and their generalization. Trans. Mosc. Math. Soc. 26 (1972)
- J. J. Duistermaat, On global action-angle coordinates. Comm. Pure Appl. Math. 33 (1980)
- P. Dazord and T. Delzant, Le probleme general des variables actions-angles. J. Differential Geom. 26 (1987)

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Let  $(M, \alpha, \mathcal{X})$  be a complete pre-isotropic structure of the Reeb type and assume the fibers of are connected. Suppose that the intersection of torodial domains  $U_i$  and  $U_j$  is connected. Then on  $U_i \cap U_j$  we have the following transition formulas:

$$egin{aligned} & heta_{
u}^{j} = \sum_{\mu=0}^{r} M_{
u\mu}^{ij}( heta_{\mu}^{i} + F_{\mu}^{ij}(y^{i}, x^{i})), \ & heta_{
u}^{j} = \sum_{\mu=0}^{r} K_{
u\mu}^{ij}y_{\mu}^{i}, & 
u = 0, \dots, r, \ & heta_{a}^{j} = X_{a}^{ij}(y^{i}, x^{i}), & a = 1, \dots, 2s, \end{aligned}$$

where matrixes  $K^{ij} = (K^{ij}_{\nu\mu})$  and  $M^{ij} = (K^{ij}_{\nu\mu})$  belong to  $GL(r+1,\mathbb{Z})$ ,  $M = (K^T)^{-1}$ , and functions  $X^{ij}_a(y^i, x^i)$ ,  $F^{ij}_{\nu}(y^i, x^i)$  satisfy

$$g_a^i = \sum_{b=1}^{2s} g_b^j \frac{\partial X_b^{ij}}{\partial x_a^i}, \qquad \sum_{b=1}^{2s} g_b^j \frac{\partial X_b^{ij}}{\partial y_k^i} + \sum_{\nu=0}^r y_\nu^i \frac{\partial F_\nu^{ij}}{\partial y_k^i} = 0.$$

Integrability in Dyn. Sys. and Control

#### Theorem

Let  $(M, \alpha, \mathcal{X})$  be a complete pre-isotropic structure of the Reeb type and let  $W' \subset W$ , dim W' = dim W be a connected compact submanifold (with a smooth boundary) such that (i)  $\pi : M' \to W'$  is a trivial principal  $\mathbb{T}^{r+1}$  bundle,  $M' = \pi^{-1}(W')$ . (ii) There exist everywhere independent functions  $\bar{x}_1, \ldots, \bar{x}_{2s}$  defined is some neighborhood of W' satisfying:

$$\langle dx_1,\ldots,dx_{2s}\rangle \cap \mathcal{E}^0=0,$$

where  $x_a = \bar{x}_a \circ \pi$  and  $\mathcal{E} = \mathcal{F}^{\perp}$  is the pseudo-orthogonal foliation of  $\mathcal{F}$ . Then there exist global action-angle variables  $(\theta_0, \ldots, \theta_r, y_0, \ldots, y_r)$ and functions  $\bar{g}_1, \ldots, \bar{g}_{2s} : W' \to \mathbb{R}$  such that the contact form  $\alpha$  on M'reads

$$\alpha_0 = y_0 d\theta_0 + \cdots + y_r d\theta_r + \pi^* (\bar{g}_1 d\bar{x}_1 + \cdots + \bar{g}_{2s} d\bar{x}_{2s}).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >