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Applications

• Attitude control problem-Serret-Andoyer
Metric

[Bonnard, Cots, Pomet,Sherbakova-
submitted]
• Three spins with unequal coupling

[Yuan, Phd thesis, Harvard, 2000]
1 General Definitions and Motivations

Hamiltonian vector field
H(q, p)

Exponential mapping (Π : standard projec-
tion)

expq0 : (p, t)→ Π(exptH(q0, p))
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Definition

• Cut point along a given geodesic curve t→
γ(t) : sup t such that γ(t) is of minimal length.
Taken all geodesics starting from q0 this de-
fines the cut locus Ccut(q0) .

• Conjugate point along the geodesic : first
time it looses the optimality for C1− closed
geodesics. Taking all geodesics this defines
the conjugate locus C(q0) .

Extension

• SR-geometry

• Control systems dq
dt = F (q, u(t)), →Mint .

Motivation

• Important geometric problem (See Berger, A
panoramic view of Riemannian geometry, Springer,
[2003])

• Application to theMonge problem in Op-
timal Transportation : continuity proper-
ties of the optimal transport mapping related
to convexity properties of the tangent injec-
tivity domains (Figalli-Rifford-Villani,
[2012])
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• Hamilton-Jacobi-Bellman equation in optimal
control.

2 State of the art

Little is known about the conjugate and cut loci
even on surfaces

• Poincaré-Myers result on two-spheres : In
the analytic case the cut locus is a finite
tree and the extremities of the branches
are cusps points of the conjugate locus
[1905, 1935]

• Jacobi conjecture on the ellipsoid : the con-
jugate locus has only 4 cusps [1842]

Remark : Only very recent proofs

• The case of ellipsoids of revolution : Sinclair-
Tanaka (2006) : on a two sphere if the Gaus-
sian curvature is monotone from the north
pole to the equator the cut locus then the cut
locus of a point not a pole is a sub-arc of the
antipodal parralel or meridian.

• General case : Itoh-Kiyohara (2004) : gen-
eral ellipsoids : the cut locus of a non um-
bilical point is a subarc of the antipodal line
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of curvature and the conjugate locus has only
four cusps.

Extension to Liouville surfaces [Itoh,
Kiyohara-2011]
3 Sketch of the proof

The oblate case for an ellipsoid of revo-
lution [Proof Bonnard, Caillau, Sinclair,
Tanaka]
• The metric is given by

g = (cos2ϕ + εsin2ϕ)dϕ2 + sin2ϕdθ2

and it can be written in Darboux normal
form

g = dψ2 + m(ψ)dθ2

where ψ = 0 is the equator.

• Integrability and Symmetries

The Hamiltonian is H = 1
2(p2ψ + 1

m(ψ)p
2
θ)

1. pθ is a constant (Clairaut relation)-Symmetry
of the geodesic flow with respect to the merid-
ian
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2. m(ψ) = m(−ψ) : symmetry of the geodesic
flow with respect to the equator.

To integrate we parameterize by arc-length H =
1
2 one gets the mechanical system

(
dψ

dt
)2 = 1− V (ψ, pθ)

where V is the potential. It has an unique min-
imum at the equator an for the geodesic flow we
have two properties

• Except for meridian and the equator the ψ−
variable oscillates periodically between
−ψ+ and ψ+.

• The θ− variable is monotonic.

Hence we have only one type of generic
behaviors for the geodesics.
• To construct the conjugate locus and the cusp
locus one must consider The set of geodesics
starting from a given point and their intersec-
tions because :

Proposition
For a complete Riemannian manifold a
cut point can be either a conjugate point
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or (generic case) a point where two inter-
secting minimizers are intersecting.
To analyze this property we introduce :

Definition
Fixing the initial point to the equator the
first return mapping is the map :

R : pθε(0,
√
m(ψ(0))→ ∆θ,

where ∆θ is the rotation angle of θ after
the first return mapping to the equator.
To control the intersection of the geodesics on

the prolate ellipsoid we use
The first return mapping is decreasing and con-

jugate and cut point of the geodesics starting
from the equator cannot occur before returning
to the equator.
To conclude about the cut locus we use the

rigidity of the geodesic flow which is a conse-
quence of the integrability :

Lemma

Due to the reflexional symmetry with respect to
the equator two geodesics starting from the equa-
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tor intersect with equal length when returning to
the equator.
This gives the cut locus.
To construct the conjugate locus of the equator

we proceed as follows.
The Gauss curvature is maximum = M at the

equator and the injectivity radius is given by π/
√
M.

It corresponds to a cusp point for the conjugate
locus at the equator.
The four cusps Jacobi conjecture is proved by

constructing by continuation the conjugate locus
from this cusp point.
To prove that cusp point cannot occur we proved

Lemma

The conjugate locus of the equator is given by

pθ → (ψtc(pθ), θtc(pθ))

with ψ′(pθ)non zero for pθ in (0,
√
m(0)).

Making the computations more precised we get
[Bonnard, Caillau, Sinclair, Tanaka 2009]

Theorem

If R′ < 0 < R′′ then the cut locus of a point not
a pole is a segment of the antipodal parallel and
the conjugate locus has only four cusps.
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Conclusion

To conclude one can prove :
The condition on the return mapping is equiva-

lent to the same condition on the period mapping
of the ψ− variable

Remark

At this level we don’t use the explicit parameter-
ization of this period by Jacobi elliptic functions.
But it helps to check the monotonicity conditions.

Work in progress [Bonnard, Caillau, Rif-
ford, CRAS 2011]

Application to the continuity property of the op-
timal transport mapping in Monge problem on
surfaces.

4 Euler-Poinsot rigid body motion and Ser-
ret Andoyer metric

Left-invariant metrics on S0(3): geometric opti-
mal control formulation

dR

dt
=

∑
i=1,3

uiRAi,Min→
ˆ T

0

∑
i=1,3

Iiu
2
i
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Maximum principle

H =
∑
uiHi −

1

2

∑
u2i ,

∂H

∂ui
= 0.

True Hamiltonian

H =
1

2
(
H2

1

I1
+
H2

2

I2
+
H2

3

I3
)

Euler equation

dHi

dt
= {Hi, H}

Limit case-SR geometry : I1 →∞.
Serret-Andoyer variables

The generic solution envolves on a two-dimensional
torus and from Liouville theorem the motion is
quasi-periodic and depends upon two frequen-
cies. If action-angles variables can be introduced
[Sadov] and intermediate step in the computation
is to introduce symplectic coordinates for which
the metric is given by
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g =
2

f (y)
dx2 +

2

(2C − f (y))
dy2,

withA = 1/I1 < B = 1/I2 < C = 1/I3, f (y) =

2(Asin2y + Bcos2y).

Remark

One additional variables z doesn’t appear in the
metric.

Geometric integration

It reduces to consider the mechanical system

(
dy

dt
)2 + V (y), V (y) = 2(C − f (y)/2)(p2xf (y)− 1)

and the metric can be written in the Darboux
normal form on a surface of revolution

g = dϕ2 + m(ϕ)dθ2.

Application

In this interpretation the integration reduces to
integrate a standard pendulum with the following
transcendance

• ϕ : Jacobi-elliptic function
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• θ : elliptic integral of the third kind

Below we represent the potential mapping : it has
minimum value at the equator but a a maximum
; this gives three types of geodesics (pendulum)
and the conjugate locus.

Potential

-
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Conjugate locus
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Conclusion

• Analogy for the case of oscillating trajectories
with the solution on an ellipsoid of revolution.

• In particular the determination of the conju-
gate locus using the analogy with the oblate
ellipsoid of revolution is a first step towards
the determination of the conjugate and cut
loci for left-invariant metrics on S0(3) .
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This is a very important and difficult problem
of geometric optimal control with many applica-
tions.

RESULT

Only oscillating trajectories can have conjugate
points and the conjugate locus is represented above.
Contrarly to the case of ellipsoid only two sym-
metric cusps exists and the asymptotic of the con-
jugate locus is related to the separatrixes of the
pendulum corresponding to separatrixes in Euler
equation.
Still the conjugate locus is computed by contin-

uation starting from the cusp point at the equa-
tor.
ONE APPLICATION OF THE TECHNIQUES
TO OPTIMAL CONTROL

Quantum control of three coupled spins with un-
equal coupling.
The system is a projection of the SR-case on

S0(3) and defines a Riemannian metric on S2

with polar singularities at the equator and is de-
formation of the so-called Grusin case-In black on
the picture.
The Grusin case is g = dϕ2 + tan2ϕdθ2
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Due to the singularity the injectivity radius
goes to zero (conjugate point of an equatorial
point accumulate near this point) and the cusp
singularity is replaced by a fold.
Deformation of the Grusin case in the spin dy-

namics
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Work in progress
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