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Abstract. In a Hamiltonian system one can produce a conserved
quantity from two conserved quantities by using the Poisson
bracket. Jacobi considered this remark as the “deepest discovery of
Poisson”, while other authors, as Bertrand, remarked that nobody
ever discovered a new conserved quantity by using this process.

(...)
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Hans Lundmark observed a more spectacular way of producing new
conserved quantities from two given ones. With his advisor Stefan
Rauch-Wojciechowski, they considered another class of equations,
that they call the Newton systems, where, in a vector space of
dimension n, a force depends on the position and defines the
second derivative of the position with respect to time. Then two
conserved quantities that are quadratic in the velocities produce
n − 2 other ones. The theorem also works on a spherical space. In
the Neumann problem on a n-dimensional sphere, starting with the
energy and another quadratic conserved quantity, one produces in
this way a (known) system of n quadratic independent conserved
quantities in involution.
Recently, we found with Lundmark a simple criterion for the
functional independence of conserved quantities produced in such a
way. We present the result quite simply, using the “projective
dynamics” point of view, i.e. the properties of central projection in
dynamics discovered by Appell in 1890.

tentative statement
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Tentative statement

Consider a system of the form q̈ = f (q), q = (q1, . . . , qn) ∈ Rn.
This is the motion of a particle under a field of forces f , or of
several particles interacting, e.g. N-body problem.
A first integral is called quadratic if it is of degree 2 in the
velocities q̇. Note that the highest order term is always a
polynomial in (q, q̇), of degree at most 2 in q (and homogeneous
of degree 2 in q̇. Examples: energy, square of angular momentum,
eccentricity vector of the 2-body problem, etc.).

“Theorem”: If the system has two quadratic first integrals which
are “sufficiently distinct”, and which are “natural Hamiltonians”
after a change of time and position variables of a certain kind,
then there are indeed n independent quadratic first integrals and
the system is Liouville-integrable.

typical example

3 / 15



The typical example
Let a0, a1, . . . , an be real parameters.

F0 =
1

2

n∑
i=1

q̇2i
a0 − ai

+
1

2(1 + q21 + · · ·+ q2n)
.

After pi = q̇i/(a0 − ai ) this is a natural Hamiltonian. Hamilton’s
equations are of the form q̈ = f (q). Clearly F0 is a quadratic first
integral. The “other sufficiently distinct Hamiltonian” is

H =
1

2

(
(1 + q21 + · · ·+ q2n)(q̇21 + · · ·+ q̇2n)− (q1q̇1 + · · · )2

)
+

+
a0 + a1q

2
1 + · · ·+ anq

2
n

2(1 + q21 + · · ·+ q2n)

(compare Pedroni, 2002, compare Matveev, Topalov, 1998,
compare Tabachnikov 1999)

statement again
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The statement again

We will introduce a “dictionary” that allows us to express precisely
the statement and to prove it. This dictionary may be called
“projective dynamics” (theory of the central projection introduced
by Appell, also named “gnomic projection” by Higgs). Using this
dictionary the statement becomes purely algebraic.

Theorem (again). Consider two symmetric N ×N matrices A and
B. Expand

∧N−2(A + λB) = C0 + λC1 + · · ·+ λN−2CN−2. If
C0, . . . ,CN−2 are linearly dependent then there is a λ such that∧N−2(A + λB) = 0.

We proved recently this with Hans Lundmark. Indeed we proved by
induction the same statement for rectangular complex matrices,
and for any exterior power. But what we need is just the above
case with N = n + 1.

dictionary
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The dictionary

All these matrices correspond to the quadratic term of the
quadratic first integrals. This highest order term is a first integral
of the “trivial” equation q̈ = 0. Let us consider the degree 1 case
before the degree 2. The linear first integrals of q̈ = 0 are q̇1, q̇2,
. . . , q̇n, q1q̇2 − q2q̇1, q1q̇3 − q3q̇1, . . . .
There are two lists of first integrals. The dictionary transforms
these two lists into just one list. We add a variable q0 and its
derivative q̇0. We change any polynomial first integral

F (q1, . . . , qn, q̇1, . . . , q̇n)

into its “homogeneous form”, function of q0, q1, . . . , qn, q̇0, . . . , q̇n:

F (q1/q0, . . . , qn/q0, q0q̇1 − q1q̇0, . . . , q0q̇n − qnq̇0).

Then q̇i becomes q0q̇i − qi q̇0 and the others are unchanged.

interpretation
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Interpretation of (q0, q̇0)

By adding this pair of variable we do not want to add one degree
of freedom. We consider q0 = 1, q̇0 = 0 as a restriction (which
gives the old form from the homogeneous form). We want to
consider other similar restrictions. For example, taking the
homogeneous form of H in the example above, then restricting H
to the unit sphere q20 + · · ·+ q2n = 1, we find the Hamiltonian of
the classical Neumann problem on the sphere. But let us begin
with simpler cases.

Halphen Appell
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Keplerian semi-cone
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Semi-cone

quadratic first integrals
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Quadratic first integrals

As we saw, linear first integrals of q̈ = 0 are linear forms in the
variable Q ∧ Q̇, where Q = (q0, q1, . . . , qn). In the same way,
quadratic first integrals of q̈ = 0 are quadratic forms in the same
variable. Quadratic forms on decomposable bivectors are
well-known objects. We associate them to tensors Rijkl such that
Rijkl = −Rjikl = −Rijlk and Rijkl + Rjkil + Rkijl = 0. This implies
that R defines a symmetric form on the bivectors, i.e. that
Rijkl = Rklij , but the cyclic (Bianchi) identity gives more, and the
quadratic form is defined only by its values on decomposable
bivectors. Such tensors have “Young tableau symmetry” with
tableau

1 3
2 4

special quadratic
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Special quadratic first integrals: the “natural hamiltonians”

E ∗
2∧
E ∗

3∧
E ∗ . . .

N−2∧
E ∗

g ↓ ↓↑R ↓ . . . ↓

E
2∧
E

3∧
E . . .

N−2∧
E

Quadratic first integrals are of the form R(q, q̇, q, q̇) + W (q).
They are “natural Hamiltonians” if R is obtained from a g as
shown on the diagram above. We know that the sum of two
quadratic first integrals R1 + W1 and R2 + W2 is a quadratic first
integral. But, if R1 comes from a g1, and R2 comes from a g2,
there is nothing to expect a priori of the sum g1 + g2.

linearity
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The key linearity
We will have a first integral with leading term R for the projective
force field M if the form

R(q,M, q, .) (∗)

is closed. We consider the case R = g−1 ∧ g−1, set gξ1 = q1,
gξ2 = q2, gξ = q and compute:

∂q1R(q,M, q, q2) = ∂q1
(
〈ξ, q〉〈ξ2,M〉 − 〈ξ2, q〉〈M, ξ〉

)
=

= 2〈ξ1, q〉〈ξ2,M〉+ 〈ξ, q〉〈ξ2, ∂q1M〉 − 〈ξ2, q1〉〈M, ξ〉
−〈ξ2, q〉〈∂q1M, ξ〉 − 〈ξ2, q〉〈M, ξ1〉.

We subtract the terms exchanging 1 and 2 to get the expression of
the differential of (∗). This is

3〈ξ1, q〉〈M, ξ2〉 − 3〈ξ2, q〉〈M, ξ1〉+ 〈ξ, q〉
(
〈ξ2, ∂q1M〉 − 〈ξ1, ∂q2M〉

)
−〈ξ2, q〉〈∂q1M, ξ〉+ 〈ξ1, q〉〈∂q2M, ξ〉.

As M is homogeneous of degree −3, we have ∂qM = −3M.
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Let ∂M ∈ V ∗ ⊗ V be the differential of the vector field M at the
point q. The contraction g∂M ∈ V ⊗ V seems to be the good
object. For example we will write Euler relation like this:
ξg∂M = −3M. The formula above becomes

−〈qcξ1 ∧ ξ2, ξg∂M〉+ 〈ξ, q〉〈g∂M, ξ1 ∧ ξ2〉+ 〈qcξ1 ∧ ξ2, g∂Mξ〉

= 〈g∂M, (qcξ1 ∧ ξ2) ∧ ξ + 〈ξ, q〉ξ1 ∧ ξ2〉 =

= 〈g∂M, qc(ξ1 ∧ ξ2 ∧ ξ)〉 = 〈σ|qc(ξ1 ∧ ξ2 ∧ ξ)〉,

where we set σ = g∂M − t(g∂M) and where the factor 2 is taken
into account in the change of notation for the duality bracket,
passing from general on tensors to particular on exterior algebra.
The final equation is linear in g :

ξc(q ∧ σ) = 0.

Then if g1 and g2 satisfy the relation, g1 + λg2 also, then∧N−2(g1 + λg2) defines a quadratic first integral for any λ and the
coefficients of the expansion give quadratic first integrals.
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